Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erwan Mazarico is active.

Publication


Featured researches published by Erwan Mazarico.


Geophysical Research Letters | 2010

Initial observations from the Lunar Orbiter Laser Altimeter (LOLA)

David E. Smith; Maria T. Zuber; Gregory A. Neumann; Frank G. Lemoine; Erwan Mazarico; Mark H. Torrence; Jan F. McGarry; David D. Rowlands; James W. Head; Thomas H. Duxbury; Oded Aharonson; Paul G. Lucey; Mark S. Robinson; Olivier S. Barnouin; John F. Cavanaugh; Xiaoli Sun; Peter Liiva; Dandan Mao; James C. Smith; Arlin E. Bartels

As of June 19, 2010, the Lunar Orbiter Laser Altimeter, an instrument on the Lunar Reconnaissance Orbiter, has collected over 2.0 × 10^9 measurements of elevation that collectively represent the highest resolution global model of lunar topography yet produced. These altimetric observations have been used to improve the lunar geodetic grid to ~10 m radial and ~100 m spatial accuracy with respect to the Moons center of mass. LOLA has also provided the highest resolution global maps yet produced of slopes, roughness and the 1064-nm reflectance of the lunar surface. Regional topography of the lunar polar regions allows precise characterization of present and past illumination conditions. LOLAs initial global data sets as well as the first high-resolution digital elevation models (DEMs) of polar topography are described herein.


Science | 2013

Gravity Field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) Mission

Maria T. Zuber; David E. Smith; Michael M. Watkins; Sami W. Asmar; Alexander S. Konopliv; Frank G. Lemoine; H. Jay Melosh; Gregory A. Neumann; Roger J. Phillips; Sean C. Solomon; Mark A. Wieczorek; J. G. Williams; Sander Goossens; Gerhard Kruizinga; Erwan Mazarico; Ryan S. Park; Dah-Ning Yuan

The Holy GRAIL? The gravity field of a planet provides a view of its interior and thermal history by revealing areas of different density. GRAIL, a pair of satellites that act as a highly sensitive gravimeter, began mapping the Moons gravity in early 2012. Three papers highlight some of the results from the primary mission. Zuber et al. (p. 668, published online 6 December) discuss the overall gravity field, which reveals several new tectonic and geologic features of the Moon. Impacts have worked to homogenize the density structure of the Moons upper crust while fracturing it extensively. Wieczorek et al. (p. 671, published online 6 December) show that the upper crust is 35 to 40 kilometers thick and less dense—and thus more porous—than previously thought. Finally, Andrews-Hanna et al. (p. 675, published online 6 December) show that the crust is cut by widespread magmatic dikes that may reflect a period of expansion early in the Moons history. The Moons gravity field reveals that impacts have homogenized the density of the crust and fractured it extensively. Spacecraft-to-spacecraft tracking observations from the Gravity Recovery and Interior Laboratory (GRAIL) have been used to construct a gravitational field of the Moon to spherical harmonic degree and order 420. The GRAIL field reveals features not previously resolved, including tectonic structures, volcanic landforms, basin rings, crater central peaks, and numerous simple craters. From degrees 80 through 300, over 98% of the gravitational signature is associated with topography, a result that reflects the preservation of crater relief in highly fractured crust. The remaining 2% represents fine details of subsurface structure not previously resolved. GRAIL elucidates the role of impact bombardment in homogenizing the distribution of shallow density anomalies on terrestrial planetary bodies.


Science | 2012

Gravity Field and Internal Structure of Mercury from MESSENGER

David E. Smith; Maria T. Zuber; Roger J. Phillips; Sean C. Solomon; Steven A. Hauck; Frank G. Lemoine; Erwan Mazarico; Gregory A. Neumann; Stanton J. Peale; Jean-Luc Margot; C. L. Johnson; Mark H. Torrence; Mark E. Perry; David D. Rowlands; Sander Goossens; James W. Head; Anthony H. Taylor

Mercury Inside and Out The MESSENGER spacecraft orbiting Mercury has been in a ∼12-hour eccentric, near-polar orbit since 18 March 2011 (see the Perspective by McKinnon). Smith et al. (p. 214, published online 21 March) present the most recent determination of Mercurys gravity field, based on radio tracking of the MESSENGER spacecraft between 18 March and 23 August 2011. The results point to an interior structure that differs from those of the other terrestrial planets: the density of the planets solid outer shell suggests the existence of a deep reservoir of high-density material, possibly an Fe-S layer. Zuber et al. (p. 217, published online 21 March) used data obtained by the MESSENGER laser altimeter through to 24 October 2011 to build a topographic map of Mercurys northern hemisphere. The map shows less variation in elevation, compared with Mars or the Moon, and its features add to the body of evidence that Mercury has sustained geophysical activity for much of its history. Mercury’s outer solid shell is denser than expected, suggesting a deep reservoir of high-density material, possibly iron-sulfide. Radio tracking of the MESSENGER spacecraft has provided a model of Mercury’s gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury’s northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/MR2 = 0.353 ± 0.017, where M and R are Mercury’s mass and radius, and a ratio of the moment of inertia of Mercury’s solid outer shell to that of the planet of Cm/C = 0.452 ± 0.035. A model for Mercury’s radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core.


Science | 2010

Hydrogen mapping of the lunar south pole using the LRO neutron detector experiment LEND.

I. G. Mitrofanov; A. B. Sanin; William V. Boynton; G. Chin; James B. Garvin; D. V. Golovin; Larry G. Evans; K. Harshman; A. S. Kozyrev; M. L. Litvak; A. Malakhov; Erwan Mazarico; Timothy P. McClanahan; G. M. Milikh; M. I. Mokrousov; G. Nandikotkur; Gregory A. Neumann; I. Nuzhdin; R. Z. Sagdeev; V.V. Shevchenko; V. N. Shvetsov; David E. Smith; Richard D. Starr; V. I. Tret'yakov; J. Trombka; D. A. Usikov; A. Varenikov; A. A. Vostrukhin; Maria T. Zuber

Watering the Moon About a year ago, a spent upper stage of an Atlas rocket was deliberately crashed into a crater at the south pole of the Moon, ejecting a plume of debris, dust, and vapor. The goal of this event, the Lunar Crater Observation and Sensing Satellite (LCROSS) experiment, was to search for water and other volatiles in the soil of one of the coldest places on the Moon: the permanently shadowed region within the Cabeus crater. Using ultraviolet, visible, and near-infrared spectroscopy data from accompanying craft, Colaprete et al. (p. 463; see the news story by Kerr; see the cover) found evidence for the presence of water and other volatiles within the ejecta cloud. Schultz et al. (p. 468) monitored the different stages of the impact and the resulting plume. Gladstone et al. (p. 472), using an ultraviolet spectrograph onboard the Lunar Reconnaissance Orbiter (LRO), detected H2, CO, Ca, Hg, and Mg in the impact plume, and Hayne et al. (p. 477) measured the thermal signature of the impact and discovered that it had heated a 30 to 200 square-meter region from ∼40 kelvin to at least 950 kelvin. Paige et al. (p. 479) mapped cryogenic zones predictive of volatile entrapment, and Mitrofanov et al. (p. 483) used LRO instruments to confirm that surface temperatures in the south polar region persist even in sunlight. In all, about 155 kilograms of water vapor was emitted during the impact; meanwhile, the LRO continues to orbit the Moon, sending back a stream of data to help us understand the evolution of its complex surface structures. A controlled spacecraft impact into a crater in the lunar south pole plunged through the lunar soil, revealing water and other volatiles. Hydrogen has been inferred to occur in enhanced concentrations within permanently shadowed regions and, hence, the coldest areas of the lunar poles. The Lunar Crater Observation and Sensing Satellite (LCROSS) mission was designed to detect hydrogen-bearing volatiles directly. Neutron flux measurements of the Moon’s south polar region from the Lunar Exploration Neutron Detector (LEND) on the Lunar Reconnaissance Orbiter (LRO) spacecraft were used to select the optimal impact site for LCROSS. LEND data show several regions where the epithermal neutron flux from the surface is suppressed, which is indicative of enhanced hydrogen content. These regions are not spatially coincident with permanently shadowed regions of the Moon. The LCROSS impact site inside the Cabeus crater demonstrates the highest hydrogen concentration in the lunar south polar region, corresponding to an estimated content of 0.5 to 4.0% water ice by weight, depending on the thickness of any overlying dry regolith layer. The distribution of hydrogen across the region is consistent with buried water ice from cometary impacts, hydrogen implantation from the solar wind, and/or other as yet unknown sources.


Science | 2012

Topography of the Northern Hemisphere of Mercury from MESSENGER Laser Altimetry

Maria T. Zuber; David E. Smith; Roger J. Phillips; Sean C. Solomon; Gregory A. Neumann; Steven A. Hauck; Stanton J. Peale; Olivier S. Barnouin; James W. Head; C. L. Johnson; Frank G. Lemoine; Erwan Mazarico; Xiaoli Sun; Mark H. Torrence; Andrew M. Freed; Christian Klimczak; Jean-Luc Margot; Jürgen Oberst; Mark E. Perry; Ralph L. McNutt; Jeffrey A. Balcerski; Nathalie Michel; Matthieu J. Talpe; Di Yang

Mercury Inside and Out The MESSENGER spacecraft orbiting Mercury has been in a ∼12-hour eccentric, near-polar orbit since 18 March 2011 (see the Perspective by McKinnon). Smith et al. (p. 214, published online 21 March) present the most recent determination of Mercurys gravity field, based on radio tracking of the MESSENGER spacecraft between 18 March and 23 August 2011. The results point to an interior structure that differs from those of the other terrestrial planets: the density of the planets solid outer shell suggests the existence of a deep reservoir of high-density material, possibly an Fe-S layer. Zuber et al. (p. 217, published online 21 March) used data obtained by the MESSENGER laser altimeter through to 24 October 2011 to build a topographic map of Mercurys northern hemisphere. The map shows less variation in elevation, compared with Mars or the Moon, and its features add to the body of evidence that Mercury has sustained geophysical activity for much of its history. Mercury’s topography indicates sustained geophysical activity for most of the planet’s geological history. Laser altimetry by the MESSENGER spacecraft has yielded a topographic model of the northern hemisphere of Mercury. The dynamic range of elevations is considerably smaller than those of Mars or the Moon. The most prominent feature is an extensive lowland at high northern latitudes that hosts the volcanic northern plains. Within this lowland is a broad topographic rise that experienced uplift after plains emplacement. The interior of the 1500-km-diameter Caloris impact basin has been modified so that part of the basin floor now stands higher than the rim. The elevated portion of the floor of Caloris appears to be part of a quasi-linear rise that extends for approximately half the planetary circumference at mid-latitudes. Collectively, these features imply that long-wavelength changes to Mercury’s topography occurred after the earliest phases of the planet’s geological history.


Science | 2010

Global Distribution of Large Lunar Craters: Implications for Resurfacing and Impactor Populations

James W. Head; Caleb I. Fassett; Seth J. Kadish; David Eugene Smith; Maria T. Zuber; Gregory A. Neumann; Erwan Mazarico

Lunar Reconnaissance The Lunar Reconnaissance Orbiter reached lunar orbit on 23 June 2009. Global data acquired since then now tell us about the impact history of the Moon and the igneous processes that shaped it. Using the Lunar Orbiter Laser Altimeter, Head et al. (p. 1504; see the cover) provide a new catalog of large lunar craters. In the lunar highlands, large-impact craters have obliterated preexisting craters of similar size, implying that crater counts in this region cannot be used effectively to determine the age of the underlying terrain. Crater counts based on the global data set indicate that the nature of the Moons impactor population has changed over time. Greenhagen et al. (p. 1507) and Glotch et al. (p. 1510) analyzed data from the Diviner Lunar Radiometer Experiment, which measures emitted thermal radiation and reflected solar radiation at infrared wavelengths. The silicate mineralogy revealed suggests the existence of more complex igneous processes on the Moon than previously assumed. An analysis of high-resolution global topography data advances our understanding of the impact history of the Moon. By using high-resolution altimetric measurements of the Moon, we produced a catalog of all impact craters ≥20 kilometers in diameter on the lunar surface and analyzed their distribution and population characteristics. The most-densely cratered portion of the highlands reached a state of saturation equilibrium. Large impact events, such as Orientale Basin, locally modified the prebasin crater population to ~2 basin radii from the basin center. Basins such as Imbrium, Orientale, and Nectaris, which are important stratigraphic markers in lunar history, are temporally distinguishable on the basis of crater statistics. The characteristics of pre- and postmare crater populations support the hypothesis that there were two populations of impactors in early solar system history and that the transition occurred near the time of the Orientale Basin event.


Journal of Geophysical Research | 2011

Global surface slopes and roughness of the Moon from the Lunar Orbiter Laser Altimeter

M. A. Rosenburg; Oded Aharonson; James W. Head; M. A. Kreslavsky; Erwan Mazarico; Gregory A. Neumann; David E. Smith; Mark H. Torrence; Maria T. Zuber

[1] The acquisition of new global elevation data from the Lunar Orbiter Laser Altimeter, carried on the Lunar Reconnaissance Orbiter, permits quantification of the surface roughness properties of the Moon at unprecedented scales and resolution. We map lunar surface roughness using a range of parameters: median absolute slope, both directional (along‐track) and bidirectional (in two dimensions); median differential slope; and Hurst exponent, over baselines ranging from ∼17 m to ∼2.7 km. We find that the lunar highlands and the mare plains show vastly different roughness properties, with subtler variations within mare and highlands. Most of the surface exhibits fractal‐like behavior, with a single or two different Hurst exponents over the given baseline range; when a transition exists, it typically occurs near the 1 km baseline, indicating a significant characteristic spatial scale for competing surface processes. The Hurst exponent is high within the lunar highlands, with a median value of 0.95, and lower in the maria (with a median value of 0.76). The median differential slope is a powerful tool for discriminating between roughness units and is useful in characterizing, among other things, the ejecta surrounding large basins, particularly Orientale, as well as the ray systems surrounding young, Copernican‐age craters. In addition, it allows a quantitative exploration on mare surfaces of the evolution of surface roughness with age.


Science | 2013

Ancient Igneous Intrusions and Early Expansion of the Moon Revealed by GRAIL Gravity Gradiometry

Jeffrey C. Andrews-Hanna; Sami W. Asmar; James W. Head; Walter S. Kiefer; Alexander S. Konopliv; Frank G. Lemoine; Isamu Matsuyama; Erwan Mazarico; Patrick J. McGovern; H. Jay Melosh; Gregory A. Neumann; Francis Nimmo; Roger J. Phillips; David E. Smith; Sean C. Solomon; G. Jeffrey Taylor; Mark A. Wieczorek; J. G. Williams; Maria T. Zuber

The Holy GRAIL? The gravity field of a planet provides a view of its interior and thermal history by revealing areas of different density. GRAIL, a pair of satellites that act as a highly sensitive gravimeter, began mapping the Moons gravity in early 2012. Three papers highlight some of the results from the primary mission. Zuber et al. (p. 668, published online 6 December) discuss the overall gravity field, which reveals several new tectonic and geologic features of the Moon. Impacts have worked to homogenize the density structure of the Moons upper crust while fracturing it extensively. Wieczorek et al. (p. 671, published online 6 December) show that the upper crust is 35 to 40 kilometers thick and less dense—and thus more porous—than previously thought. Finally, Andrews-Hanna et al. (p. 675, published online 6 December) show that the crust is cut by widespread magmatic dikes that may reflect a period of expansion early in the Moons history. The Moons gravity map shows that the crust is cut by extensive magmatic dikes, perhaps implying a period of early expansion. The earliest history of the Moon is poorly preserved in the surface geologic record due to the high flux of impactors, but aspects of that history may be preserved in subsurface structures. Application of gravity gradiometry to observations by the Gravity Recovery and Interior Laboratory (GRAIL) mission results in the identification of a population of linear gravity anomalies with lengths of hundreds of kilometers. Inversion of the gravity anomalies indicates elongated positive-density anomalies that are interpreted to be ancient vertical tabular intrusions or dikes formed by magmatism in combination with extension of the lithosphere. Crosscutting relationships support a pre-Nectarian to Nectarian age, preceding the end of the heavy bombardment of the Moon. The distribution, orientation, and dimensions of the intrusions indicate a globally isotropic extensional stress state arising from an increase in the Moons radius by 0.6 to 4.9 kilometers early in lunar history, consistent with predictions of thermal models.


Science | 2013

Bright and Dark Polar Deposits on Mercury: Evidence for Surface Volatiles

Gregory A. Neumann; John F. Cavanaugh; Xiaoli Sun; Erwan Mazarico; David E. Smith; Maria T. Zuber; Dandan Mao; David A. Paige; Sean C. Solomon; Carolyn M. Ernst; Olivier S. Barnouin

Wet Mercury Radar observations of Mercurys poles in the 1990s revealed regions of high backscatter that were interpreted as indicative of thick deposits of water ice; however, other explanations have also been proposed (see the Perspective by Lucey). MESSENGER neutron data reported by Lawrence et al. (p. 292, published online 29 November) in conjunction with thermal modeling by Paige et al. (p. 300, published online 29 November) now confirm that the primary component of radar-reflective material at Mercurys north pole is water ice. Neumann et al. (p. 296, published online 29 November) analyzed surface reflectance measurements from the Mercury Laser Altimeter onboard MESSENGER and found that while some areas of high radar backscatter coincide with optically bright regions, consistent with water ice exposed at the surface, some radar-reflective areas correlate with optically dark regions, indicative of organic sublimation lag deposits overlying the ice. Dark areas that fall outside regions of high radio backscatter suggest that water ice was once more widespread. Spacecraft data and a thermal model show that water ice and organic volatiles are present at Mercury’s north pole. [Also see Perspective by Lucey] Measurements of surface reflectance of permanently shadowed areas near Mercury’s north pole reveal regions of anomalously dark and bright deposits at 1064-nanometer wavelength. These reflectance anomalies are concentrated on poleward-facing slopes and are spatially collocated with areas of high radar backscatter postulated to be the result of near-surface water ice. Correlation of observed reflectance with modeled temperatures indicates that the optically bright regions are consistent with surface water ice, whereas dark regions are consistent with a surface layer of complex organic material that likely overlies buried ice and provides thermal insulation. Impacts of comets or volatile-rich asteroids could have provided both dark and bright deposits.


Geophysical Research Letters | 2014

GRGM900C: A degree 900 lunar gravity model from GRAIL primary and extended mission data

Frank G. Lemoine; Sander Goossens; Terence J. Sabaka; Joseph B. Nicholas; Erwan Mazarico; David D. Rowlands; Bryant D. Loomis; Douglas Chinn; Gregory A. Neumann; David E. Smith; Maria T. Zuber

We have derived a gravity field solution in spherical harmonics to degree and order 900, GRGM900C, from the tracking data of the Gravity Recovery and Interior Laboratory (GRAIL) Primary (1 March to 29 May 2012) and Extended Missions (30 August to 14 December 2012). A power law constraint of 3.6 ×10−4/ℓ2 was applied only for degree ℓ greater than 600. The model produces global correlations of gravity, and gravity predicted from lunar topography of ≥ 0.98 through degree 638. The models degree strength varies from a minimum of 575–675 over the central nearside and farside to 900 over the polar regions. The model fits the Extended Mission Ka-Band Range Rate data through 17 November 2012 at 0.13 μm/s RMS, whereas the last month of Ka-Band Range-Rate data obtained from altitudes of 2–10 km fit at 0.98 μm/s RMS, indicating that there is still signal inherent in the tracking data beyond degree 900.

Collaboration


Dive into the Erwan Mazarico's collaboration.

Top Co-Authors

Avatar

Maria T. Zuber

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar

Gregory A. Neumann

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Frank G. Lemoine

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

David E. Smith

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Mark H. Torrence

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David D. Rowlands

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Sean C. Solomon

Lamont–Doherty Earth Observatory

View shared research outputs
Top Co-Authors

Avatar

Roger J. Phillips

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge