Erwan Michard
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erwan Michard.
Science | 2011
Erwan Michard; Pedro T. Lima; Filipe Borges; Ana Catarina Silva; Maria Teresa Portes; João E. Carvalho; Matthew Gilliham; Lai-Hua Liu; Gerhard Obermeyer; José A. Feijó
Amino acid modulation of Ca2+ signaling guides growth of plant pollen tubes. Elevations in cytosolic free calcium concentration ([Ca2+]cyt) constitute a fundamental signal transduction mechanism in eukaryotic cells, but the molecular identity of Ca2+ channels initiating this signal in plants is still under debate. Here, we show by pharmacology and loss-of-function mutants that in tobacco and Arabidopsis, glutamate receptor–like channels (GLRs) facilitate Ca2+ influx across the plasma membrane, modulate apical [Ca2+]cyt gradient, and consequently affect pollen tube growth and morphogenesis. Additionally, wild-type pollen tubes grown in pistils of knock-out mutants for serine-racemase (SR1) displayed growth defects consistent with a decrease in GLR activity. Our findings reveal a novel plant signaling mechanism between male gametophyte and pistil tissue similar to amino acid–mediated communication commonly observed in animal nervous systems.
The Plant Cell | 2000
Benol^t Lacombe; Guillaume Pilot; Erwan Michard; Frédéric Gaymard; Hervé Sentenac; Jean-Baptiste Thibaud
RNA gel blot and reverse transcription–polymerase chain reaction experiments were used to identify a single K+ channel gene in Arabidopsis as expressed throughout the plant. Use of the β-glucuronidase reporter gene revealed expression of this gene, AKT2/AKT3, in both source and sink phloem tissues. The AKT2/AKT3 gene corresponds to two previously identified cDNAs, AKT2 (reconstructed at its 5′ end) and AKT3, the open reading frame of the latter being shorter at its 5′ end than that of the former. Rapid amplification of cDNA ends with polymerase chain reaction and site-directed mutagenesis was performed to identify the initiation codon for AKT2 translation. All of the data are consistent with the hypothesis that the encoded polypeptide corresponds to the longest open reading frame previously identified (AKT2). Electrophysiological characterization (macroscopic and single-channel currents) of AKT2 in both Xenopus oocytes and COS cells revealed a unique gating mode and sensitivity to pH (weak inward rectification, inhibition, and increased rectification upon internal or external acidification), suggesting that AKT2 has enough functional plasticity to perform different functions in phloem tissue of source and sink organs. The plant stress hormone abscisic acid was shown to increase the amount of AKT2 transcript, suggesting a role for the AKT2 in the plant response to drought.
The Plant Cell | 2002
Isabelle Chérel; Erwan Michard; Nadine Platet; Karine Mouline; Carine Alcon; Hervé Sentenac; Jean-Baptiste Thibaud
The AKT2 K+ channel is endowed with unique functional properties, being the only weak inward rectifier characterized to date in Arabidopsis. The gene is expressed widely, mainly in the phloem but also at lower levels in leaf epiderm, mesophyll, and guard cells. The AKT2 mRNA level is upregulated by abscisic acid. By screening a two-hybrid cDNA library, we isolated a protein phosphatase 2C (AtPP2CA) involved in abscisic acid signaling as a putative partner of AKT2. We further confirmed the interaction by in vitro binding studies. The expression of AtPP2CA (β-glucuronidase reporter gene) displayed a pattern largely overlapping that of AKT2 and was upregulated by abscisic acid. Coexpression of AtPP2CA with AKT2 in COS cells and Xenopus laevis oocytes was found to induce both an inhibition of the AKT2 current and an increase of the channel inward rectification. Site-directed mutagenesis and pharmacological analysis revealed that this functional interaction involves AtPP2CA phosphatase activity. Regulation of AKT2 activity by AtPP2CA in planta could allow the control of K+ transport and membrane polarization during stress situations.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Pawel Gajdanowicz; Erwan Michard; Michael Sandmann; Marcio Rocha; Luiz Gustavo Guedes Corrêa; Santiago J. Ramírez-Aguilar; Judith Lucia Gomez-Porras; Wendy González; Jean-Baptiste Thibaud; J. T. van Dongen; Ingo Dreyer
The essential mineral nutrient potassium (K+) is the most important inorganic cation for plants and is recognized as a limiting factor for crop yield and quality. Nonetheless, it is only partially understood how K+ contributes to plant productivity. K+ is used as a major active solute to maintain turgor and to drive irreversible and reversible changes in cell volume. K+ also plays an important role in numerous metabolic processes, for example, by serving as an essential cofactor of enzymes. Here, we provide evidence for an additional, previously unrecognized role of K+ in plant growth. By combining diverse experimental approaches with computational cell simulation, we show that K+ circulating in the phloem serves as a decentralized energy storage that can be used to overcome local energy limitations. Posttranslational modification of the phloem-expressed Arabidopsis K+ channel AKT2 taps this “potassium battery,” which then efficiently assists the plasma membrane H+-ATPase in energizing the transmembrane phloem (re)loading processes.
The International Journal of Developmental Biology | 2009
Erwan Michard; Filipa Alves; José A. Feijó
In order to cope with reproduction in a dry environment without any sort of motility, plants have developed a very specialized and unique sexual system. Of special notice, the two sperm cells that will perform the double fertilization typical of higher plants are carried by one of the fastest growing cells in nature, the pollen tube. This tube develops from the vegetative cell of the pollen grain upon germination on the female tissues. While it cannot be considered as a canonical excitable cell, pollen tubes depend for most of their fundamental functional features on a close regulation of ion dynamics, namely in terms of polarization of extracellular fluxes and formation of standing cytosolic free ion gradients, namely of calcium (Ca(2+)) and protons (H(+)). In turn, these imply that plasma membrane transporters are polarized, or polarly regulated, and that internal signaling cascades transduce this spatial information into the basic features of growth and morphogenesis needed for pollen tubes to target correctly the ovules and discharge the sperm cells. Because of the singularity of this organization, and the ease with which pollen tubes can be experimentally handled, recent years have witnessed an accumulation of data at many levels, from basic biophysical and cell biology characterization, to gene assignment and transcriptomic description of pollen development. In this review we aim to organize this information in terms of the basic biophysical features of membrane function and integrate it into conceptual testable hypotheses on how the dynamics of ion regulation may underlie fundamental properties of cell development.
The Plant Cell | 2008
Ana C. Certal; Ricardo Almeida; Lara M. Carvalho; Eric T. Wong; Nuno Moreno; Erwan Michard; Jorge Carneiro; Joaquín Rodríguez-León; Hen-ming Wu; Alice Y. Cheung; José A. Feijó
Polarized growth in pollen tubes results from exocytosis at the tip and is associated with conspicuous polarization of Ca2+, H+, K+, and Cl− -fluxes. Here, we show that cell polarity in Nicotiana tabacum pollen is associated with the exclusion of a novel pollen-specific H+-ATPase, Nt AHA, from the growing apex. Nt AHA colocalizes with extracellular H+ effluxes, which revert to influxes where Nt AHA is absent. Fluorescence recovery after photobleaching analysis showed that Nt AHA moves toward the apex of growing pollen tubes, suggesting that the major mechanism of insertion is not through apical exocytosis. Nt AHA mRNA is also excluded from the tip, suggesting a mechanism of polarization acting at the level of translation. Localized applications of the cation ionophore gramicidin A had no effect where Nt AHA was present but acidified the cytosol and induced reorientation of the pollen tube where Nt AHA was absent. Transgenic pollen overexpressing Nt AHA-GFP developed abnormal callose plugs accompanied by abnormal H+ flux profiles. Furthermore, there is no net flux of H+ in defined patches of membrane where callose plugs are to be formed. Taken together, our results suggest that proton dynamics may underlie basic mechanisms of polarity and spatial regulation in growing pollen tubes.
FEBS Letters | 2001
Ingo Dreyer; Erwan Michard; Benoı̂t Lacombe; Jean-Baptiste Thibaud
Among the Shaker‐like plant potassium channels, AKT2 is remarkable because it mediates both instantaneous ‘leak‐like’ and time‐dependent hyperpolarisation‐activated currents. This unique gating behaviour has been analysed in Xenopus oocytes and in COS and Chinese hamster ovary cells. Whole‐cell and single‐channel data show that (i) AKT2 channels display two distinct gating modes, (ii) the gating of a given AKT2 channel can change from one mode to the other and (iii) this conversion is under the control of post‐translational factor(s). This behaviour is strongly reminiscent of that of the KCNK2 channel, recently reported to be controlled by its phosphorylation state.
The Journal of General Physiology | 2005
Erwan Michard; Benoît Lacombe; Fabien Porée; Bernd Mueller-Roeber; Hervé Sentenac; Jean-Baptiste Thibaud; Ingo Dreyer
Among all voltage-gated K+ channels from the model plant Arabidopsis thaliana, the weakly rectifying K+ channel (Kweak channel) AKT2 displays unique gating properties. AKT2 is exceptionally regulated by phosphorylation: when nonphosphorylated AKT2 behaves as an inward-rectifying potassium channel; phosphorylation of AKT2 abolishes inward rectification by shifting its activation threshold far positive (>200 mV) so that it closes only at voltages positive of +100 mV. In its phosphorylated form, AKT2 is thus locked in the open state in the entire physiological voltage range. To understand the molecular grounds of this unique gating behavior, we generated chimeras between AKT2 and the conventional inward-rectifying channel KAT1. The transfer of the pore from KAT1 to AKT2 altered the permeation properties of the channel. However, the gating properties were unaffected, suggesting that the pore region of AKT2 is not responsible for the unique Kweak gating. Instead, a lysine residue in S4, highly conserved among all Kweak channels but absent from other plant K+ channels, was pinpointed in a site-directed mutagenesis approach. Substitution of the lysine by serine or aspartate abolished the “open-lock” characteristic and converted AKT2 into an inward-rectifying channel. Interestingly, phosphoregulation of the mutant AKT2-K197S appeared to be similar to that of the Kin channel KAT1: as suggested by mimicking the phosphorylated and dephosphorylated states, phosphorylation induced a shift of the activation threshold of AKT2-K197S by about +50 mV. We conclude that the lysine residue K197 sensitizes AKT2 to phosphoregulation. The phosphorylation-induced reduction of the activation energy in AKT2 is ∼6 kT larger than in the K197S mutant. It is discussed that this hypersensitive response of AKT2 to phosphorylation equips a cell with the versatility to establish a potassium gradient and to make efficient use of it.
Nature | 2017
Carlos Ortiz-Ramírez; Erwan Michard; Alexander A. Simon; Daniel S. C. Damineli; Marcela Hernandez-Coronado; Jörg D. Becker; José A. Feijó
Glutamate receptors are well characterized channels that mediate cell-to-cell communication during neurotransmission in animals, but their functional role in organisms without a nervous system remains unclear. In plants, genes of the GLUTAMATE RECEPTOR-LIKE (GLR) family have been implicated in defence against pathogens, reproduction, control of stomata aperture and light signal transduction. However, the large number of GLR genes present in angiosperm genomes (20 to 70) has prevented the observation of strong phenotypes in loss-of-function mutants. Here we show that in the basal land plant Physcomitrella patens, mutation of the GLR genes GLR1 and GLR2 causes failure of sperm cells to target the female reproductive organs. In addition, we show that GLR genes encode non-selective Ca2+-permeable channels that can regulate cytoplasmic Ca2+ and are needed to induce the expression of a BELL1-like transcription factor essential for zygote development. Our work reveals functions for GLR channels in sperm chemotaxis and transcriptional regulation. Sperm chemotaxis is essential for fertilization in both animals and early land plants such as bryophytes and pteridophytes. Therefore, our results suggest that ionotropic glutamate receptors may have been conserved throughout plant evolution to mediate cell-to-cell communication during sexual reproduction.
Plant Signaling & Behavior | 2008
Linda Jeanguenin; Anne Lebaudy; Jérôme Xicluna; Carine Alcon; Eric Hosy; Geoffrey Duby; Erwan Michard; Benoît Lacombe; Ingo Dreyer; Jean Baptiste Thibaud
Potassium translocation in plants is accomplished by a large variety of transport systems. Most of the available molecular information on these proteins concerns voltage-gated potassium channels (Kv channels). The Arabidopsis genome comprises nine genes encoding α-subunits of Kv channels. Based on knowledge of their animal homologues, and on biochemical investigations, it is broadly admitted that four such polypeptides must assemble to yield a functional Kv channel. The intrinsic functional properties of Kv channel α-subunits have been described by expressing them in suitable heterologous contexts where homo-tetrameric channels could be characterized. However, due to the high similarity of both the polypeptidic sequence and the structural scheme of Kv channel α-subunits, formation of heteromeric Kv channels by at least two types of α-subunits is conceivable. Several examples of such heteromeric plant Kv channels have been studied in heterologous expression systems and evidence that heteromerization actually occurs in planta has now been published. It is therefore challenging to uncover the physiological role of this heteromerization. Fine tuning of Kv channels by heteromerisation could be relevant not only to potassium transport but also to electrical signaling within the plant.