Erwan Thébault
University of Nantes
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erwan Thébault.
Earth, Planets and Space | 2015
Erwan Thébault; Christopher C. Finlay; Ciaran Beggan; Patrick Alken; Julien Aubert; Olivier Barrois; F. Bertrand; T. N. Bondar; Axel Boness; Laura Brocco; Elisabeth Canet; Aude Chambodut; Arnaud Chulliat; Pierdavide Coïsson; François Civet; Aimin Du; Alexandre Fournier; Isabelle Fratter; N. Gillet; Brian Hamilton; Mohamed Hamoudi; Gauthier Hulot; Thomas Jager; Monika Korte; Weijia Kuang; Xavier Lalanne; Benoit Langlais; Jean-Michel Leger; Vincent Lesur; F. J. Lowes
The 12th generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2014 by the Working Group V-MOD appointed by the International Association of Geomagnetism and Aeronomy (IAGA). It updates the previous IGRF generation with a definitive main field model for epoch 2010.0, a main field model for epoch 2015.0, and a linear annual predictive secular variation model for 2015.0-2020.0. Here, we present the equations defining the IGRF model, provide the spherical harmonic coefficients, and provide maps of the magnetic declination, inclination, and total intensity for epoch 2015.0 and their predicted rates of change for 2015.0-2020.0. We also update the magnetic pole positions and discuss briefly the latest changes and possible future trends of the Earth’s magnetic field.
Earth, Planets and Space | 2010
Erwan Thébault; Christopher C. Finlay; Patrick Alken; Ciaran Beggan; Elisabeth Canet; Arnaud Chulliat; Benoit Langlais; Vincent Lesur; F. J. Lowes; C. Manoj; Martin Rother; Reyko Schachtschneider
BackgroundThe 12th revision of the International Geomagnetic Reference Field (IGRF) was issued in December 2014 by the International Association of Geomagnetism and Aeronomy (IAGA) Division V Working Group V-MOD (http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html). This revision comprises new spherical harmonic main field models for epochs 2010.0 (DGRF-2010) and 2015.0 (IGRF-2015) and predictive linear secular variation for the interval 2015.0-2020.0 (SV-2010-2015).FindingsThe models were derived from weighted averages of candidate models submitted by ten international teams. Teams were led by the British Geological Survey (UK), DTU Space (Denmark), ISTerre (France), IZMIRAN (Russia), NOAA/NGDC (USA), GFZ Potsdam (Germany), NASA/GSFC (USA), IPGP (France), LPG Nantes (France), and ETH Zurich (Switzerland). Each candidate model was carefully evaluated and compared to all other models and a mean model using well-defined statistical criteria in the spectral domain and maps in the physical space. These analyses were made to pinpoint both troublesome coefficients and the geographical regions where the candidate models most significantly differ. Some models showed clear deviation from other candidate models. However, a majority of the task force members appointed by IAGA thought that the differences were not sufficient to exclude models that were well documented and based on different techniques.ConclusionsThe task force thus voted for and applied an iterative robust estimation scheme in space. In this paper, we report on the evaluations of the candidate models and provide details of the algorithm that was used to derive the IGRF-12 product.
Geophysical Research Letters | 2015
François Civet; Erwan Thébault; O. Verhoeven; Benoit Langlais; Diana Saturnino
We present a 1-D electrical conductivity profile of the Earths mantle down to 2000u2009km derived from L1b Swarm satellite magnetic field measurements from November 2013 to September 2014. We first derive a model for the main magnetic field, correct the data for a lithospheric field model, and additionally select the data to reduce the contributions of the ionospheric field. We then model the primary and induced magnetospheric fields for periods between 2 and 256u2009days and perform a Bayesian inversion to obtain the probability density function for the electrical conductivity as function of depth. The conductivity increases by 3 orders of magnitude in the 400–900u2009km depth range. Assuming a pyrolitic mantle composition, this profile is interpreted in terms of temperature variations leading to a temperature gradient in the lower mantle that is close to adiabatic.
Earth, Planets and Space | 2016
Vincent Lesur; Mohamed Hamoudi; Yujin Choi; J. Dyment; Erwan Thébault
The World Digital Anomaly Map (WDMAM) is a worldwide compilation of near-surface magnetic data. We present here a candidate for the second version of the WDMAM and its characteristics. This candidate has been evaluated by a group of independent reviewers and has been adopted as the official second version of the WDMAM during the 26th general assembly of the International Union of Geodesy and Geomagnetism (IUGG). The way this compilation has been built is described with some details. A global magnetic field model of the lithosphere contribution, parameterised by spherical harmonics, has been derived up to degree and order 800. The model information content has been evaluated by computing local spectra. Further, the compatibility of the anomaly field displayed by the WDMAM with a pure induced magnetisation is tested by comparison with the main field strength. These studies allowed an analysis of the compilation in terms of strength and wavelength content. They confirm the extremely smooth and weak contribution of the magnetic field generated in the lithosphere over Western Europe. This apparent weakness possibly extends to the Northern African continent. However, a global analysis remains difficult to achieve given the sparseness of good quality data over very large area of oceans and continents. The WDMAM and related information can be downloaded at http://www.wdmam.org/.
Earth, Planets and Space | 2016
Erwan Thébault; Pierre Vigneron; Benoit Langlais; Gauthier Hulot
The Swarm constellation of satellites was launched in November 2013 and since then has delivered high-quality scalar and vector magnetic field measurements. A consortium of several research institutions was selected by the European Space Agency to provide a number of scientific products to be made available to the scientific community on a regular basis. In this study, we present the dedicated lithospheric field inversion model. It uses carefully selected magnetic field scalar and vector measurements from the three Swarm satellites between March 2014 and December 2015 and directly benefits from the explicit expression of the magnetic field gradients by the lower pair of Swarm satellites. The modeling scheme is a two-step one and relies first on a regional modeling approach that is very sensitive to small spatial scales and weak signals which we seek to describe. The final model is built from adjacent regional solutions and consists in a global spherical harmonics model expressed between degrees 16 and 80. The quality of the derived model is assessed through a comparison with independent models based on Swarm and the CHAMP satellites. This comparison emphasizes the high level of accuracy of the current model after only 2xa0years of measurements but also highlights the possible improvements which will be possible once the lowest two satellites reach lower altitudes.
Earth, Planets and Space | 2015
Foteini Vervelidou; Erwan Thébault
We have constructed global maps of the large-scale magnetic thickness and magnetization of Earth’s lithosphere. Deriving such large-scale maps based on lithospheric magnetic field measurements faces the challenge of the masking effect of the core field. In this study, the maps were obtained through analyses in the spectral domain by means of a new regional spatial power spectrum based on the Revised Spherical Cap Harmonic Analysis (R-SCHA) formalism. A series of regional spectral analyses were conducted covering the entire Earth. The R-SCHA surface power spectrum for each region was estimated using the NGDC-720 spherical harmonic (SH) model of the lithospheric magnetic field, which is based on satellite, aeromagnetic, and marine measurements. These observational regional spectra were fitted to a recently proposed statistical expression of the power spectrum of Earth’s lithospheric magnetic field, whose free parameters include the thickness and magnetization of the magnetic sources. The resulting global magnetic thickness map is compared to other crustal and magnetic thickness maps based upon different geophysical data. We conclude that the large-scale magnetic thickness of the lithosphere is on average confined to a layer that does not exceed the Moho.
Earth, Planets and Space | 2015
Erwan Thébault; Christopher C. Finlay; Hiroaki Toh
This special issue of Earth, Planets and Space, synthesizes the efforts made during the construction of the twelfth generation of the International Geomagnetic Reference Field (IGRF-12) that was released online in December 2014 (http://www.ngdc.noaa.gov/IAGA/vmod/ igrf.html). The IGRF-12 is a series of standard mathematical models describing the large scale internal part of the Earth’s magnetic field between epochs 1900.0 and 2015.0 with a forecast to epoch 2020.0. This activity has been maintained since 1968 by a working group of volunteer scientists from several international institutions but grew out from discussions started in the early 1960s (Barton, 1997). The IGRF task force operates under the auspices of the International Association of Geomagnetism and Aeronomy/Association Internationale de Geomagnetisme et d’Aeronomie (IAGA/AIGA), which is one of the International Union of Geodesy and Geophysics/Union Internationale de Geodesie et Geophysique (IUGG/UIGG), an “international organization dedicated to advancing, promoting, and communicating knowledge of the Earth system, its space environment, and the dynamical processes causing change” (http://www.iugg.org/). The twelfth generation of IGRF models extends and updates the previous one (the IGRF-11, Finlay et al. 2010). It provides a new Definitive Geomagnetic Reference Field model for epoch 2010.0. It proposes a provisional reference field model for epoch 2015.0 and a predictive part for epochs ranging from 2015.0 to 2020.0 (Thebault et al. 2015a). These models were derived from candidate models submitted by 10 teams. The teams were led by the British Geological Survey (UK), DTU Space (Denmark), ISTerre (France), IZMIRAN (Russia), NOAA/NGDC (USA), GFZ Potsdam (Germany), NASA/GSFC (USA), IPGP (France), LPG Nantes (France), and ETH Zurich (Switzerland). Modelers made use of the data measured at ground geomagnetic observatories and built their models using satellite
Earth, Planets and Space | 2015
Alexandre Fournier; Julien Aubert; Erwan Thébault
In the context of the 12th release of the international geomagnetic reference field (IGRF), we present the methodology we followed to design a candidate secular variation model for years 2015–2020. An initial geomagnetic field model centered around 2014.3 is first constructed, based on Swarm magnetic measurements, for both the main field and its instantaneous secular variation. This initial model is next fed to an inverse geodynamo modelling framework in order to specify, for epoch 2014.3, the initial condition for the integration of a three-dimensional numerical dynamo model. The initialization phase combines the information contained in the initial model with that coming from the numerical dynamo model, in the form of three-dimensional multivariate statistics built from a numerical dynamo run unconstrained by data.We study the performance of this novel approach over two recent 5-year long intervals, 2005–2010 and 2009–2014. For a forecast horizon of 5 years, shorter than the large-scale secular acceleration time scale (∼10 years), we find that it is safer to neglect the flow acceleration and to assume that the flow determined by the initialization is steady. This steady flow is used to advance the three-dimensional induction equation forward in time, with the benefit of estimating the effects of magnetic diffusion. The result of this deterministic integration between 2015.0 and 2020.0 yields our candidate average secular variation model for that time frame, which is thus centered on 2017.5.
Earth, Planets and Space | 2015
Diana Saturnino; Benoit Langlais; François Civet; Erwan Thébault; M. Mandea
We describe the main field and secular variation candidate models for the 12th generation of the International Geomagnetic Reference Field model. These two models are derived from the same parent model, in which the main field is extrapolated to epoch 2015.0 using its associated secular variation. The parent model is exclusively based on measurements acquired by the European Space Agency Swarm mission between its launch on 11/22/2013 and 09/18/2014. It is computed up to spherical harmonic degree and order 25 for the main field, 13 for the secular variation, and 2 for the external field. A selection on local time rather than on true illumination of the spacecraft was chosen in order to keep more measurements. Data selection based on geomagnetic indices was used to minimize the external field contributions. Measurements were screened and outliers were carefully removed. The model uses magnetic field intensity measurements at all latitudes and magnetic field vector measurements equatorward of 50° absolute quasi-dipole magnetic latitude. A second model using only the vertical component of the measured magnetic field and the total intensity was computed. This companion model offers a slightly better fit to the measurements. These two models are compared and discussed.We discuss in particular the quality of the model which does not use the full vector measurements and underline that this approach may be used when only partial directional information is known. The candidate models and their associated companion models are retrospectively compared to the adopted IGRF which allows us to criticize our own choices.
Space Science Reviews | 2017
Christopher C. Finlay; Vincent Lesur; Erwan Thébault; F. Vervelidou; A. Morschhauser; R. Shore