Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erwen Li is active.

Publication


Featured researches published by Erwen Li.


Biosensors and Bioelectronics | 2017

Detecting explosive molecules from nanoliter solution: A new paradigm of SERS sensing on hydrophilic photonic crystal biosilica.

Xianming Kong; Yuting Xi; Paul Le Duff; Xinyuan Chong; Erwen Li; Fanghui Ren; Gregory L. Rorrer; Alan X. Wang

We demonstrate a photonic crystal biosilica surface-enhanced Raman scattering (SERS) substrate based on a diatom frustule with in-situ synthesized silver nanoparticles (Ag NPs) to detect explosive molecules from nanoliter (nL) solution. By integrating high density Ag NPs inside the nanopores of diatom biosilica, which is not achievable by traditional self-assembly techniques, we obtained ultra-high SERS sensitivity due to dual enhancement mechanisms. First, the hybrid plasmonic-photonic crystal biosilica with three dimensional morphologies was obtained by electroless-deposited Ag seeds at nanometer sized diatom frustule surface, which provides high density hot spots as well as strongly coupled optical resonances with the photonic crystal structure of diatom frustules. Second, we discovered that the evaporation-driven microscopic flow combined with the strong hydrophilic surface of diatom frustules is capable of concentrating the analyte molecules, which offers a simple yet effective mechanism to accelerate the mass transport into the SERS substrate. Using the inkjet printing technology, we are able to deliver multiple 100pico-liter (pL) volume droplets with pinpoint accuracy into a single diatom frustule with dimension around 30µm×7µm×5µm, which allows for label-free detection of explosive molecules such as trinitrotoluene (TNT) down to 10-10M in concentration and 2.7×10-15g in mass from 120nL solution. Our research illustrates a new paradigm of SERS sensing to detect trace level of chemical compounds from minimum volume of analyte using nature created photonic crystal biosilica materials.


Nanoscale | 2016

Optofluidic sensing from inkjet-printed droplets: the enormous enhancement by evaporation-induced spontaneous flow on photonic crystal biosilica

Xianming Kong; Yuting Xi; Paul LeDuff; Erwen Li; Ye Liu; Li-Jing Cheng; Gregory L. Rorrer; Hua Tan; Alan X. Wang

Novel transducers for detecting an ultra-small volume of an analyte solution play pivotal roles in many applications such as chemical analysis, environmental protection and biomedical diagnosis. Recent advances in optofluidics offer tremendous opportunities for analyzing miniature amounts of samples with high detection sensitivity. In this work, we demonstrate enormous enhancement factors (106-107) of the detection limit for optofluidic analysis from inkjet-printed droplets by evaporation-induced spontaneous flow on photonic crystal biosilica when compared with conventional surface-enhanced Raman scattering (SERS) sensing using the pipette dispensing technology. Our computational fluid dynamics simulation has shown a strong recirculation flow inside the 100 picoliter droplet during the evaporation process due to the thermal Marangoni effect. The combination of the evaporation-induced spontaneous flow in micron-sized droplets and the highly hydrophilic photonic crystal biosilica is capable of providing a strong convection flow to combat the reverse diffusion force, resulting in a higher concentration of the analyte molecules at the diatom surface. In the meanwhile, high density hot-spots provided by the strongly coupled plasmonic nanoparticles with photonic crystal biosilica under a 1.5 μm laser spot are verified by finite-difference time domain simulation, which is crucial for SERS sensing. Using a drop-on-demand inkjet device to dispense multiple 100 picoliter analyte droplets with pinpoint accuracy, we achieved the single molecule detection of Rhodamine 6G and label-free sensing of 4.5 × 10-17 g trinitrotoluene from only 200 nanoliter solution.


IEEE Sensors Journal | 2015

Ultrashort Near-Infrared Fiber-Optic Sensors for Carbon Dioxide Detection

Xinyuan Chong; Ki-Joong Kim; Paul R. Ohodnicki; Erwen Li; Chih-Hung Chang; Alan X. Wang

In this paper, we report a fiber-optic carbon dioxide (CO2) near-infrared (IR) absorption sensor with only 8-cm sensing length that is coated with nanoporous metalorganic framework material Cu-BTC (BTC = benzene-1,3, 5-tricarboxylate). The multimode optical fiber was etched by hydrofluoric acid to remove the cladding and part of the core, resulting in larger evanescent field to sense the near-IR absorption induced by the adsorbed CO2. The Cu-BTC thin film with 100 nm thickness was then grown onto the ethced core through a stepwise layer-by-layer method. Our real-time measurement results show that the CO2 detection limit is better than 500 ppm and the overall response time is 40 s for absorption and 75 s for desorption. To the best of our knowledge, this is the shortest near-IR fiber-optic sensor for CO2 detection at 1.57-μm wavelength.


Optics Letters | 2016

Broadband on-chip near-infrared spectroscopy based on a plasmonic grating filter array

Erwen Li; Xinyuan Chong; Fanghui Ren; Alan X. Wang

We demonstrate an ultra-compact, broadband on-chip near-infrared (NIR) spectroscopy system based on a narrow-band plasmonic filter array. The entire filter array, consisting of 28 individual subwavelength metallic gratings, was monolithically integrated in a thin gold film on a quartz substrate, covering a 270 nm spectra from 1510 nm to 1780 nm. In order to achieve a high spectral resolution, extremely narrow slits are created for the gratings with a polymer waveguide layer on top, generating narrow-band guided-mode resonances through coupling with the surface-plasmon resonances of the metallic gratings. Experimental results show that the transmission bands of the filter array have full width at half-maximum of only 7 nm-13 nm, which is sufficient for NIR spectroscopy. The NIR absorption spectroscopy of xylene using the on-chip plasmonic filter array matches very well with the results from conventional Fourier transform infrared spectroscopy, which proves the great potential for NIR sensing applications.


ACS Sensors | 2017

Electrokinetic Manipulation Integrated Plasmonic–Photonic Hybrid Raman Nanosensors with Dually Enhanced Sensitivity

Chao Liu; Zheng Wang; Erwen Li; Zexi Liang; Swapnajit Chakravarty; Xiaochuan Xu; Alan X. Wang; Ray T. Chen; Donglei Fan

To detect biochemicals with ultrahigh sensitivity, efficiency, reproducibility, and specificity has been the holy grail in the development of nanosensors. In this work, we report an innovative type of photonic-plasmonic hybrid Raman nanosensor integrated with electrokinetic manipulation by rational design, which offers dual mechanisms that enhance the sensitivity for molecule detection directly in solution. For the first time, we integrate large arrays of synthesized plasmonic nanocapsules with densely surface distributed silver (Ag) nanoparticles (NPs) on lithographically patterned photonic crystal slabs via electric-field assembling. With the interdigital microelectrodes, the applied electric fields not only assemble the hybrid plasmonic nanocapsules on photonic crystal slabs, but also generate electrokinetic flows that focus analyte molecules to the Ag hot spots on the nanocapsules for surface-enhanced Raman scattering (SERS) detection. The synergistic effects of plasmonic-photonic resonance and the electrokinetic molecular focusing can promote the SERS enhancement factor (EF) robustly to ∼2 × 109. Various molecules including SERS probing molecules, nucleobases, and unsafe food additives can be detected directly from suspension. The innovative mechanism, design, and fabrication reported in this work can inspire a new paradigm for achieving high-performance Raman nanosensors, which is pivotal for lab-on-chip disease diagnosis and environmental protection.


Materials | 2018

Diatomite Photonic Crystals for Facile On-Chip Chromatography and Sensing of Harmful Ingredients from Food

Xianming Kong; Qian Yu; Erwen Li; Rui Wang; Qing Liu; Alan X. Wang

Diatomaceous earth—otherwise called diatomite—is essentially composed of hydrated biosilica with periodic nanopores. Diatomite is derived from fossilized remains of diatom frustules and possesses photonic-crystal features. In this paper, diatomite simultaneously functions as the matrix of the chromatography plate and the substrate for surface-enhanced Raman scattering (SERS), by which the photonic crystal-features could enhance the optical field intensity. The on-chip separation performance of the device was confirmed by separating and detecting industrial dye (Sudan I) in an artificial aqueous mixture containing 4-mercaptobenzoic acid (MBA), where concentrated plasmonic Au colloid was casted onto the analyte spot for SERS measurement. The plasmonic-photonic hybrid mode between the Au nanoparticles (NP) and the diatomite layer could supply nearly 10 times the increment of SERS signal (MBA) intensity compared to the common silica gel chromatography plate. Furthermore, this lab-on-a-chip photonic crystal device was employed for food safety sensing in real samples and successfully monitored histamine in salmon and tuna. This on-chip food sensor can be used as a cheap, robust, and portable sensing platform for monitoring for histamine or other harmful ingredients at trace levels in food products.


Nanotechnology | 2017

Plasmonic nanopatch array with integrated metal–organic framework for enhanced infrared absorption gas sensing

Xinyuan Chong; Ki-Joong Kim; Yujing Zhang; Erwen Li; Paul R. Ohodnicki; Chih-Hung Chang; Alan X. Wang

In this letter, we present a nanophotonic device consisting of plasmonic nanopatch array (NPA) with integrated metal-organic framework (MOF) for enhanced infrared absorption gas sensing. By designing a gold NPA on a sapphire substrate, we are able to achieve enhanced optical field that spatially overlaps with the MOF layer, which can adsorb carbon dioxide (CO2) with high capacity. Experimental results show that this hybrid plasmonic-MOF device can effectively increase the infrared absorption path of on-chip gas sensors by more than 1100-fold. The demonstration of infrared absorption spectroscopy of CO2 using the hybrid plasmonic-MOF device proves a promising strategy for future on-chip gas sensing with ultra-compact size.


Journal of Biophotonics | 2017

Plasmonic nanoparticles-decorated diatomite biosilica: extending the horizon of on-chip chromatography and label-free biosensing

Xianming Kong; Erwen Li; Kenny Squire; Ye Liu; Bo Wu; Li-Jing Cheng; Alan X. Wang

Diatomite consists of fossilized remains of ancient diatoms and is a type of naturally abundant photonic crystal biosilica with multiple unique physical and chemical functionalities. In this paper, we explored the fluidic properties of diatomite as the matrix for on-chip chromatography and, simultaneously, the photonic crystal effects to enhance the plasmonic resonances of metallic nanoparticles for surface-enhanced Raman scattering (SERS) biosensing. The plasmonic nanoparticle-decorated diatomite biosilica provides a lab-on-a-chip capability to separate and detect small molecules from mixture samples with ultra-high detection sensitivity down to 1 ppm. We demonstrate the significant potential for biomedical applications by screening toxins in real biofluid, achieving simultaneous label-free biosensing of phenethylamine and miR21cDNA in human plasma with unprecedented sensitivity and specificity. To the best of our knowledge, this is the first time demonstration to detect target molecules from real biofluids by on-chip chromatography-SERS techniques.


IEEE Transactions on Nanobioscience | 2016

Chemical and Biological Sensing Using Diatom Photonic Crystal Biosilica With In-Situ Growth Plasmonic Nanoparticles

Xianming Kong; Kenny Squire; Erwen Li; Paul LeDuff; Gregory L. Rorrer; Suning Tang; Bin Chen; Christopher P. McKay; Rafael Navarro-González; Alan X. Wang

In this paper, we described a new type of bioenabled nano-plasmonic sensors based on diatom photonic crystal biosilica with in-situ growth silver nanoparticles and demonstrated label-free chemical and biological sensing based on surface-enhanced Raman scattering (SERs) from complex samples. Diatoms are photosynthetic marine micro-organisms that create their own skeletal shells of hydrated amorphous silica, called frustules, which possess photonic crystal-like hierarchical micro- & nanoscale periodic pores. Our research shows that such hybrid plasmonic-biosilica nanostructures formed by cost-effective and eco-friendly bottom-up processes can achieve ultra-high limit of detection for medical applications, food sensing, water/air quality monitoring and geological/space research. The enhanced sensitivity comes from the optical coupling of the guided-mode resonance of the diatom frustules and the localized surface plasmons of the silver nanoparticles. Additionally, the nanoporous, ultra-hydrophilic diatom biosilica with large surface-to-volume ratio can concentrate more analyte molecules to the surface of the SERS substrates, which can help to detect biomolecules that cannot be easily adsorbed by metallic nanoparticles.


Applied Physics Letters | 2016

On-chip near-infrared spectroscopy of CO2 using high resolution plasmonic filter array

Xinyuan Chong; Erwen Li; Kenneth Squire; Alan X. Wang

We report an ultra-compact, cost-effective on-chip near-infrared spectroscopy system for CO2 sensing using narrow-band optical filter array based on plasmonic gratings with a waveguide layer. By varying the periodicity of the gratings, the transmission spectra of the filters can be continuously tuned to cover the 2.0 μm sensing window with high spectral resolution around 10 nm. Our experimental results show that the on-chip spectroscopy system can resolve the two symmetric vibrational bands of CO2 at 2.0 μm wavelength, which proves its potential to replace the expensive commercial IR spectroscopy system for on-site gas sensing.

Collaboration


Dive into the Erwen Li's collaboration.

Top Co-Authors

Avatar

Alan X. Wang

Oregon State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul R. Ohodnicki

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar

Ki-Joong Kim

Oregon State University

View shared research outputs
Top Co-Authors

Avatar

Yujing Zhang

Oregon State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ray T. Chen

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fanghui Ren

Oregon State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge