Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erwin G. Van Meir is active.

Publication


Featured researches published by Erwin G. Van Meir.


Cell | 2013

The somatic genomic landscape of glioblastoma.

Cameron Brennan; Roel G.W. Verhaak; Aaron McKenna; Benito Campos; Houtan Noushmehr; Sofie R. Salama; Siyuan Zheng; Debyani Chakravarty; J. Zachary Sanborn; Samuel H. Berman; Rameen Beroukhim; Brady Bernard; Chang-Jiun Wu; Giannicola Genovese; Ilya Shmulevich; Jill S. Barnholtz-Sloan; Lihua Zou; Rahulsimham Vegesna; Sachet A. Shukla; Giovanni Ciriello; W.K. Yung; Wei Zhang; Carrie Sougnez; Tom Mikkelsen; Kenneth D. Aldape; Darell D. Bigner; Erwin G. Van Meir; Michael D. Prados; Andrew E. Sloan; Keith L. Black

We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer.


CA: A Cancer Journal for Clinicians | 2010

Exciting New Advances in Neuro-Oncology The Avenue to a Cure for Malignant Glioma

Erwin G. Van Meir; Constantinos G. Hadjipanayis; Andrew D. Norden; Hui-Kuo Shu; Patrick Y. Wen; Jeffrey J. Olson

Malignant gliomas are the most common and deadly brain tumors. Nevertheless, survival for patients with glioblastoma, the most aggressive glioma, although individually variable, has improved from an average of 10 months to 14 months after diagnosis in the last 5 years due to improvements in the standard of care. Radiotherapy has been of key importance to the treatment of these lesions for decades, and the ability to focus the beam and tailor it to the irregular contours of brain tumors and minimize the dose to nearby critical structures with intensity‐modulated or image‐guided techniques has improved greatly. Temozolomide, an alkylating agent with simple oral administration and a favorable toxicity profile, is used in conjunction with and after radiotherapy. Newer surgical techniques, such as fluorescence‐guided resection and neuroendoscopic approaches, have become important in the management of malignant gliomas. Furthermore, new discoveries are being made in basic and translational research, which are likely to improve this situation further in the next 10 years. These include agents that block 1 or more of the disordered tumor proliferation signaling pathways, and that overcome resistance to already existing treatments. Targeted therapies such as antiangiogenic therapy with antivascular endothelial growth factor antibodies (bevacizumab) are finding their way into clinical practice. Large‐scale research efforts are ongoing to provide a comprehensive understanding of all the genetic alterations and gene expression changes underlying glioma formation. These have already refined the classification of glioblastoma into 4 distinct molecular entities that may lead to different treatment regimens. The role of cancer stem‐like cells is another area of active investigation. There is definite hope that by 2020, new cocktails of drugs will be available to target the key molecular pathways involved in gliomas and reduce their mortality and morbidity, a positive development for patients, their families, and medical professionals alike. CA Cancer J Clin 2010;60:166–193.


Gene | 2001

Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5

Guangjie Cheng; Zehong Cao; Xiang Xi Xu; Erwin G. Van Meir; J. David Lambeth

gp91phox is the catalytic subunit of the respiratory burst oxidase, an NADPH-dependent, superoxide generating enzyme present in phagocytes. In phagocytes, the enzyme functions in host defense, but reactive oxygen generation has also been described in a variety of non-phagocytic cells, including cancer cells. We previously reported the cloning of Nox1 (NADPH oxidase1), a homolog of gp91phox, its expression in colon and vascular smooth muscle, and its oncogenic properties when overexpressed [Suh et al. (1999). Nature 401, 79-82]. Herein, we report the cloning and tissue expression of three additional homologs of gp91phox, termed Nox3, Nox4 and Nox5, members of a growing family of gp91phox homologs. All are predicted to encode proteins of around 65 kDa, and like gp91phox, all show 5-6 conserved predicted transmembrane alpha-helices containing putative heme binding regions as well as a flavoprotein homology domain containing predicted binding sites for both FAD and NADPH. Nox3 is expressed primarily in fetal tissues, and Nox4 is expressed in not only fetal tissues, but also kidney, placenta and glioblastoma cells. Nox5 is expressed in a variety of fetal tissues as well as in adult spleen and uterus. Nox isoforms are aberrantly expressed in several cells derived from human cancers, with Nox4 being the isoform most frequently expressed in the tumor cells investigated. Thus, expression of Nox family members is likely to account for some of the reactive oxygen generation seen in non-phagocytic cells.


Neuro-oncology | 2005

The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis.

Daniel J. Brat; Anita C. Bellail; Erwin G. Van Meir

Interleukin-8 (IL-8, or CXCL8), which is a chemokine with a defining CXC amino acid motif that was initially characterized for its leukocyte chemotactic activity, is now known to possess tumorigenic and proangiogenic properties as well. In human gliomas, IL-8 is expressed and secreted at high levels both in vitro and in vivo, and recent experiments suggest it is critical to glial tumor neovascularity and progression. Levels of IL-8 correlate with histologic grade in glial neoplasms, and the most malignant form, glioblastoma, shows the highest expression in pseudopalisading cells around necrosis, suggesting that hypoxia/anoxia may stimulate expression. In addition to hypoxia/anoxia stimulation, increased IL-8 in gliomas occurs in response to Fas ligation, death receptor activation, cytosolic Ca(2+), TNF-alpha, IL-1, and other cytokines and various cellular stresses. The IL-8 promoter contains binding sites for the transcription factors NF-kappaB, AP-1, and C-EBP/NF-IL-6, among others. AP-1 has been shown to mediate IL-8 upregulation by anoxia in gliomas. The potential tumor suppressor ING4 was recently shown to be a critical regulator of NF-kappaB-mediated IL-8 transcription and subsequent angiogenesis in gliomas. The IL-8 receptors that could contribute to IL-8-mediated tumorigenic and angiogenic responses include CXCR1 and CXCR2, both of which are G-protein coupled, and the Duffy antigen receptor for cytokines, which has no defined intracellular signaling capabilities. The proangiogenic activity of IL-8 occurs predominantly following binding to CXCR2, but CXCR1 appears to contribute as well through independent, small-GTPase activity. A precise definition of the mechanisms by which IL-8 exerts its proangiogenic functions requires further study for the development of effective IL-8-targeted therapies.


Brain Pathology | 1999

Frequent Co-Alterations of TP53, p16/CDKN2A, p14ARF, PTEN Tumor Suppressor Genes in Human Glioma Cell Lines.

Nobuaki Ishii; Daniel Maier; Adrian Merlo; Mitsuhiro Tada; Yutaka Sawamura; Annie-Claire Diserens; Erwin G. Van Meir

In this study we established the simultaneous status of TP53, p16, p14ARF and PTEN tumor suppressor genes in 34 randomly chosen human glioma cell lines. Nine cell lines (26.4%) harbored mutations or deletions in all four tumor suppressor genes and 22 cell lines (64%) had alterations in at least three. Mutations/deletions were found at the following frequencies: TP53 (76.5%), p14ARF (64.7%), p16 (64,7%), PTEN (73.5%). Thus, there was a high incidence of alterations in the cellular pathways involving the p53 transcription factor (94.1%), the retinoblastoma protein (64.7%) and the PTEN phosphatase (73.5%) and 91% of cell lines carried mutations in two or more pathways. This provides the first clear genetic evidence that these tumor suppressors participate in biological pathways which are functioning separately/independently in glioma cells. The status of the gene alterations did not correlate with tumorigenicity in immunocompromized mice or any clinical parameters. Although the mutation rate was higher in glioma cell lines than that reported for glioma tissues, the alterations were molecularly representative of those found in adult de novo glioblastoma. This study highlights the importance of developing therapeutic approaches applicable to tumors with a broad range of genetic alterations and also provides an invaluable panel of glioma cell lines to make this possible.


Cell | 2010

Natural Mutagenesis of Human Genomes by Endogenous Retrotransposons

Rebecca C. Iskow; Michael T. McCabe; Ryan E. Mills; Spencer Torene; W. Stephen Pittard; Andrew F. Neuwald; Erwin G. Van Meir; Paula M. Vertino; Scott E. Devine

Two abundant classes of mobile elements, namely Alu and L1 elements, continue to generate new retrotransposon insertions in human genomes. Estimates suggest that these elements have generated millions of new germline insertions in individual human genomes worldwide. Unfortunately, current technologies are not capable of detecting most of these young insertions, and the true extent of germline mutagenesis by endogenous human retrotransposons has been difficult to examine. Here, we describe technologies for detecting these young retrotransposon insertions and demonstrate that such insertions indeed are abundant in human populations. We also found that new somatic L1 insertions occur at high frequencies in human lung cancer genomes. Genome-wide analysis suggests that altered DNA methylation may be responsible for the high levels of L1 mobilization observed in these tumors. Our data indicate that transposon-mediated mutagenesis is extensive in human genomes and is likely to have a major impact on human biology and diseases.


Neuro-oncology | 2005

Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis

Balveen Kaur; Fatima W. Khwaja; Eric A. Severson; Shannon Matheny; Daniel J. Brat; Erwin G. Van Meir

Glioblastomas, like other solid tumors, have extensive areas of hypoxia and necrosis. The importance of hypoxia in driving tumor growth is receiving increased attention. Hypoxia-inducible factor 1 (HIF-1) is one of the master regulators that orchestrate the cellular responses to hypoxia. It is a heterodimeric transcription factor composed of alpha and beta subunits. The alpha subunit is stable in hypoxic conditions but is rapidly degraded in normoxia. The function of HIF-1 is also modulated by several molecular mechanisms that regulate its synthesis, degradation, and transcriptional activity. Upon stabilization or activation, HIF-1 translocates to the nucleus and induces transcription of its downstream target genes. Most important to gliomagenesis, HIF-1 is a potent activator of angiogenesis and invasion through its upregulation of target genes critical for these functions. Activation of the HIF-1 pathway is a common feature of gliomas and may explain the intense vascular hyperplasia often seen in glioblastoma multiforme. Activation of HIF results in the activation of vascular endothelial growth factors, vascular endothelial growth factor receptors, matrix metalloproteinases, plasminogen activator inhibitor, transforming growth factors alpha and beta, angiopoietin and Tie receptors, endothelin-1, inducible nitric oxide synthase, adrenomedullin, and erythropoietin, which all affect glioma angiogenesis. In conclusion, HIF is a critical regulatory factor in the tumor microenvironment because of its central role in promoting proangiogenic and invasive properties. While HIF activation strongly promotes angiogenesis, the emerging vasculature is often abnormal, leading to a vicious cycle that causes further hypoxia and HIF upregulation.


Cancer Research | 2004

Pseudopalisades in Glioblastoma Are Hypoxic, Express Extracellular Matrix Proteases, and Are Formed by an Actively Migrating Cell Population

Daniel J. Brat; Amilcar A. Castellano-Sanchez; Stephen B. Hunter; Marcia Pecot; Cynthia Cohen; Elizabeth H. Hammond; Sarojini N. Devi; Balveen Kaur; Erwin G. Van Meir

Necrosis and vascular proliferation are the pathologic features that distinguish the most malignant infiltrative astrocytoma, glioblastoma (GBM), from those of lower grades. In GBM, hypercellular zones called pseudopalisades typically surround necrotic foci. Although these cells are known to secrete high levels of proangiogenic factors that promote tumor growth, their origins are ill defined. We propose that pseudopalisades represent differing stages and histologic samplings of astrocytoma cells migrating away from a hypoxic/anoxic focus, often triggered by a central vaso-occlusive event. This proposition is based on our findings that pseudopalisading cells are 5–50% less proliferative and 6–20 times more apoptotic than adjacent astrocytoma, indicating that cell accumulation does not result from increased proliferation or resistance to apoptosis. Coexisting inflammatory cells account for <2% of pseudopalisading cells and cannot account for hypercellularity. Pseudopalisading cells show nuclear expression of hypoxia-inducible factor 1α, consistent with their hypoxic nature, and hypoxia induces a 20–60% increase in glioma cell migration in vitro. Hypoxic cells in vitro and pseudopalisades in GBM specimens show enhanced gelatinase activity, typical of an invasive phenotype. These results suggest that pseudopalisading cells are migrating at the periphery of a hypoxic center. To uncover a potential source of hypoxia and sequence of structural events leading to pseudopalisade formation, we performed a morphometric analysis of 234 pseudopalisades from 85 pretreatment GBMs. We found distorted, degenerating, or thrombosed blood vessels within the center of more than half the pseudopalisades, suggesting that at least a subset of pseudopalisades are two-dimensional histologic representations of tumor cells migrating away from a vaso-occlusive event.


Laboratory Investigation | 2004

Vaso-occlusive and prothrombotic mechanisms associated with tumor hypoxia, necrosis, and accelerated growth in glioblastoma

Daniel J. Brat; Erwin G. Van Meir

Glioblastoma (GBM) has explosive biologic properties with rapid clinical progression leading to death. Its distinguishing pathologic features, necrosis with surrounding pseudopalisades and microvascular hyperplasia, are believed to be instrumental to its accelerated growth. Microvascular hyperplasia arises in response to the secretion of proangiogenic factors by hypoxic pseudopalisades and allows for peripheral neoplastic expansion. Mechanisms underlying necrosis and hypoxia remain obscure, but vaso-occlusive and prothrombotic contributions could be substantial. Recent investigations on the origin of pseudopalisades suggest that this morphologic phenomenon is created by a tumor cell population actively migrating away from a central hypoxic region and that, in at least a significant subset, hypoxia-induced migration appears due to vaso-occlusion caused by intravascular thrombosis. Both vascular endothelial growth factor induced vascular permeability to plasma coagulation factors and the increased neoplastic expression of tissue factor likely contribute to a prothrombotic state favoring intravascular thrombosis. In addition to prothrombotic mechanisms, vaso-occlusion could also result from angiopoietin-2-mediated endothelial cell apoptosis and vascular regression, which follows neoplastic co-option of native vessels in animal models of gliomas. Vaso-occlusive and prothrombotic mechanisms in GBM could readily explain the presence of pseudopalisades and coagulative necrosis in tissue sections, the emergence of central contrast enhancement and its rapid peripheral expansion on neuroimaging, and the dramatic shift to an accelerated rate of clinical progression. Since the hypoxic induction of angiogenesis appears to support further neoplastic growth, therapeutic targeting of the underlying vascular pathology and thrombosis could provide a new means to prolong time to progression.


Cancer Research | 2008

BRCA1-associated protein-1 is a tumor suppressor that requires deubiquitinating activity and nuclear localization.

Karen H. Ventii; Narra S. Devi; Kenneth L. Friedrich; Tatiana A. Chernova; Mourad Tighiouart; Erwin G. Van Meir; Keith D. Wilkinson

BRCA1-associated protein-1 (BAP1), a deubiquitinating enzyme of unknown cellular function, is mutated in breast and lung cancers. In this study, we have shown for the first time that BAP1 has tumor suppressor activity in vivo by showing that BAP1 can suppress tumorigenicity of lung cancer cells in athymic nude mice. We show that BAP1 fulfills another criterion of a genuine tumor suppressor because cancer-associated BAP1 mutants are deficient in deubiquitinating activity. We show for the first time that one of the two predicted nuclear targeting motifs is required for nuclear localization of BAP1 and that a truncation mutant found in a lung cancer cell line results in BAP1 that fails to localize to the nucleus. Furthermore, we show that deubiquitinating activity and nuclear localization are both required for BAP1-mediated tumor suppression in nude mice. We show that BAP1 exerts its tumor suppressor functions by affecting the cell cycle, speeding the progression through the G(1)-S checkpoint, and inducing cell death via a process that has characteristics of both apoptosis and necrosis. Surprisingly, BAP1-mediated growth suppression is independent of wild-type BRCA1. Because deubiquitinating enzymes are components of the ubiquitin proteasome system, this pathway has emerged as an important target for anticancer drugs. The identification of the deubiquitinating enzyme BAP1 as a tumor suppressor may lead to further understanding of how the ubiquitin proteasome system contributes to cancer and aid in the identification of new targets for cancer therapy.

Collaboration


Dive into the Erwin G. Van Meir's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge