Narra S. Devi
Emory University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Narra S. Devi.
Cancer Research | 2008
Karen H. Ventii; Narra S. Devi; Kenneth L. Friedrich; Tatiana A. Chernova; Mourad Tighiouart; Erwin G. Van Meir; Keith D. Wilkinson
BRCA1-associated protein-1 (BAP1), a deubiquitinating enzyme of unknown cellular function, is mutated in breast and lung cancers. In this study, we have shown for the first time that BAP1 has tumor suppressor activity in vivo by showing that BAP1 can suppress tumorigenicity of lung cancer cells in athymic nude mice. We show that BAP1 fulfills another criterion of a genuine tumor suppressor because cancer-associated BAP1 mutants are deficient in deubiquitinating activity. We show for the first time that one of the two predicted nuclear targeting motifs is required for nuclear localization of BAP1 and that a truncation mutant found in a lung cancer cell line results in BAP1 that fails to localize to the nucleus. Furthermore, we show that deubiquitinating activity and nuclear localization are both required for BAP1-mediated tumor suppression in nude mice. We show that BAP1 exerts its tumor suppressor functions by affecting the cell cycle, speeding the progression through the G(1)-S checkpoint, and inducing cell death via a process that has characteristics of both apoptosis and necrosis. Surprisingly, BAP1-mediated growth suppression is independent of wild-type BRCA1. Because deubiquitinating enzymes are components of the ubiquitin proteasome system, this pathway has emerged as an important target for anticancer drugs. The identification of the deubiquitinating enzyme BAP1 as a tumor suppressor may lead to further understanding of how the ubiquitin proteasome system contributes to cancer and aid in the identification of new targets for cancer therapy.
Oncogene | 2005
Balveen Kaur; Daniel J. Brat; Narra S. Devi; Erwin G. Van Meir
Brain angiogenesis inhibitor 1 (BAI1) is a transmembrane protein with unknown function expressed primarily in normal but not tumoral brain. The finding of thrombospondin type 1 repeats in its extracellular domain suggested an antiangiogenic function, but the mechanisms by which a transmembrane receptor could inhibit angiogenesis remained unexplained. Here we demonstrate that BAI1 is proteolytically cleaved at a conserved G-protein-coupled receptor proteolytic cleavage site (GPS), releasing its 120 kDa extracellular domain. We named this secreted fragment Vasculostatin as it inhibited migration of endothelial cells in vitro and dramatically reduced in vivo angiogenesis. Both constitutive and doxycycline-induced expression of Vasculostatin elicited dose-dependent suppression of tumor growth and vascular density in mice, implicating Vasculostatin in the regulation of vascular homeostasis and tumor prevention. Generation of a soluble antiangiogenic factor by cleavage of a pre-existing transmembrane protein represents a novel mechanism for regulating vascular homeostasis and preventing tumorigenesis. Modulation of this cleavage or delivery of Vasculostatin may constitute novel treatment modalities for cancer and other diseases of aberrant angiogenesis, especially in the brain.
Molecular Cell | 2014
Jun Fan; Changliang Shan; Hee-Bum Kang; Shannon Elf; Jianxin Xie; Meghan Tucker; Ting-Lei Gu; Mike Aguiar; Scott Lonning; Huaibin Chen; Moosa Mohammadi; Laura-Mae P Britton; Benjamin A. Garcia; Maša Alečković; Yibin Kang; Stefan Kaluz; Narra S. Devi; Erwin G. Van Meir; Taro Hitosugi; Jae Ho Seo; Sagar Lonial; Manila Gaddh; Martha Arellano; Hanna Jean Khoury; Fadlo R. Khuri; Titus J. Boggon; Sumin Kang; Jing Chen
Mitochondrial pyruvate dehydrogenase complex (PDC) is crucial for glucose homeostasis in mammalian cells. The current understanding of PDC regulation involves inhibitory serine phosphorylation of pyruvate dehydrogenase (PDH) by PDH kinase (PDK), whereas dephosphorylation of PDH by PDH phosphatase (PDP) activates PDC. Here, we report that lysine acetylation of PDHA1 and PDP1 is common in epidermal growth factor (EGF)-stimulated cells and diverse human cancer cells. K321 acetylation inhibits PDHA1 by recruiting PDK1, and K202 acetylation inhibits PDP1 by dissociating its substrate PDHA1, both of which are important in promoting glycolysis in cancer cells and consequent tumor growth. Moreover, we identified mitochondrial ACAT1 and SIRT3 as the upstream acetyltransferase and deacetylase, respectively, of PDHA1 and PDP1, while knockdown of ACAT1 attenuates tumor growth. Furthermore, Y381 phosphorylation of PDP1 dissociates SIRT3 and recruits ACAT1 to PDC. Together, hierarchical, distinct posttranslational modifications act in concert to control molecular composition of PDC and contribute to the Warburg effect.
Cancer Research | 2007
Dawn E. Post; Eric M. Sandberg; Michele Kyle; Narra S. Devi; Daniel J. Brat; Zhiheng Xu; Mourad Tighiouart; Erwin G. Van Meir
There is a need for novel therapies targeting hypoxic cells in tumors. These cells are associated with tumor resistance to therapy and express hypoxia inducible factor-1 (HIF-1), a transcription factor that mediates metabolic adaptation to hypoxia and activates tumor angiogenesis. We previously developed an oncolytic adenovirus (HYPR-Ad) for the specific killing of hypoxic/HIF-active tumor cells, which we now armed with an interleukin-4 gene (HYPR-Ad-IL4). We designed HYPR-Ad-IL4 by cloning the Ad E1A viral replication and IL-4 genes under the regulation of a bidirectional hypoxia/HIF-responsive promoter. The IL-4 cytokine was chosen for its ability to induce a strong host antitumor immune response and its potential antiangiogenic activity. HYPR-Ad-IL4 induced hypoxia-dependent IL-4 expression, viral replication, and conditional cytolysis of hypoxic, but not normoxic cells. The treatment of established human tumor xenografts with HYPR-Ad-IL4 resulted in rapid and maintained tumor regression with the same potency as that of wild-type dl309-Ad. HYPR-Ad-IL4-treated tumors displayed extensive necrosis, fibrosis, and widespread viral replication. Additionally, these tumors contained a distinctive leukocyte infiltrate and prominent hypoxia. The use of an oncolytic Ad that locally delivers IL-4 to tumors is novel, and we expect that HYPR-Ad-IL4 will have broad therapeutic use for all solid tumors that have hypoxia or active HIF, regardless of tissue origin or genetic alterations.
Cancer Research | 2009
Balveen Kaur; Sarah M. Cork; Eric M. Sandberg; Narra S. Devi; Zhaobin Zhang; Philip A. Klenotic; Maria Febbraio; Hyunsuk Shim; Hui Mao; Carol Tucker-Burden; Roy L. Silverstein; Daniel J. Brat; Jeffrey J. Olson; Erwin G. Van Meir
Angiogenesis is a critical physiologic process that is appropriated during tumorigenesis. Little is known about how this process is specifically regulated in the brain. Brain angiogenesis inhibitor-1 (BAI1) is a brain-predominant seven-transmembrane protein that contains five antiangiogenic thrombospondin type-1 repeats (TSR). We recently showed that BAI1 is cleaved at a conserved proteolytic cleavage site releasing a soluble, 120 kDa antiangiogenic factor called vasculostatin (Vstat120). Vstat120 has been shown to inhibit in vitro angiogenesis and suppress subcutaneous tumor growth. Here, we examine its effect on the intracranial growth of malignant gliomas and further study its antitumor mechanism. First, we show that expression of Vstat120 strongly suppresses the intracranial growth of malignant gliomas, even in the presence of the strong proangiogenic stimulus mediated by the oncoprotein epidermal growth factor receptor variant III (EGFRvIII). This tumor-suppressive effect is accompanied by a decrease in tumor vascular density, suggesting a potent antiangiogenic effect in the brain. Second, and consistent with this interpretation, we find that treatment with Vstat120 reduces the migration of cultured microvascular endothelial cells in vitro and inhibits corneal angiogenesis in vivo. Third, we show that these antivascular effects critically depend on the presence of the cell surface receptor CD36 on endothelial cells in vitro and in vivo, supporting the role of Vstat120 TSRs in mediating these effects. These results advance the understanding of brain-specific angiogenic regulation, and suggest that Vstat120 has therapeutic potential in the treatment of brain tumors and other intracerebral vasculopathies.
Clinical Cancer Research | 2004
Dawn E. Post; Narra S. Devi; Zhenchao Li; Daniel J. Brat; Balveen Kaur; Ainsley Nicholson; Jeffrey J. Olson; Zhaobin Zhang; Erwin G. Van Meir
Hypoxia plays a critical role in driving tumor malignancy and is associated with poor patient survival in many human cancers. Novel therapies targeting hypoxic tumor cells are urgently needed, because these cells hinder tumor eradication. Here we demonstrate than an anticancer strategy based on intratumoral delivery of a novel type of oncolytic adenovirus targeting tumor hypoxia is therapeutically efficient and can augment standard chemotherapy. We used a conditionally replicative adenovirus (HYPR-Ad) to specifically kill hypoxic tumor cells. Viral infection and conditional replication occurred efficiently in hypoxic/hypoxia-inducible factor-active cells in culture and in vivo, prevented tumor formation, and reduced the growth of established tumors. Combining HYPR-Ad with chemotherapy effective against normoxic cells resulted in strongly enhanced antitumor efficacy. These studies demonstrate that targeting the hypoxic microenvironment of tumors rather than an intrinsic gene expression defect is a viable and novel antitumor therapeutic strategy that can be used in combination with existing treatment regimens. The replication and oncolytic potential of this virus was made dependent on hypoxic/hypoxia-inducible factor, a transcription factor activated in the tumor hypoxic microenvironment, broadening its therapeutic use to solid tumors of any genetic make-up or tissue of origin.
Oncogene | 2012
Sarah M. Cork; Balveen Kaur; Narra S. Devi; Lee Cooper; Joel H. Saltz; Eric M. Sandberg; Stefan Kaluz; Erwin G. Van Meir
Brain-specific angiogenesis inhibitor 1 (BAI1), an orphan G protein-coupled receptor-type seven transmembrane protein, was recently found mutated or silenced in multiple human cancers and can interfere with tumor growth when overexpressed. Yet, little is known about its regulation and the molecular mechanisms through which this novel tumor suppressor exerts its anti-cancer effects. Here, we demonstrate that the N terminus of BAI1 is cleaved extracellularly to generate a truncated receptor and a 40-kDa fragment (Vasculostatin-40) that inhibits angiogenesis. We demonstrate that this novel proteolytic processing event depends on a two-step cascade of protease activation: proprotein convertases, primarily furin, activate latent matrix metalloproteinase-14, which then directly cleaves BAI1 to release the bioactive fragment. These findings significantly augment our knowledge of BAI1 by showing a novel post-translational mechanism regulating BAI1 activity through cancer-associated proteases, have important implications for BAI1 function and regulation, and present novel opportunities for therapy of cancer and other vascular diseases.
Clinical Cancer Research | 2012
Shaoman Yin; Stefan Kaluz; Narra S. Devi; Adnan A. Jabbar; Rita G. de Noronha; Jiyoung Mun; Zhaobin Zhang; Purushotham R. Boreddy; Wei Wang; Zhibo Wang; Thomas J. Abbruscato; Zhengjia Chen; Jeffrey J. Olson; Ruiwen Zhang; Mark M. Goodman; K. C. Nicolaou; Erwin G. Van Meir
Purpose: The hypoxia-inducible factor-1 (HIF-1) plays a critical role in tumor adaptation to hypoxia, and its elevated expression correlates with poor prognosis and treatment failure in patients with cancer. In this study, we determined whether 3,4-dimethoxy-N-[(2,2-dimethyl-2H-chromen-6-yl)methyl]-N-phenylbenzenesulfonamide, KCN1, the lead inhibitor in a novel class of arylsulfonamide inhibitors of the HIF-1 pathway, had antitumorigenic properties in vivo and further defined its mechanism of action. Experimental Design: We studied the inhibitory effect of systemic KCN1 delivery on the growth of human brain tumors in mice. To define mechanisms of KCN1 anti-HIF activities, we examined its influence on the assembly of a functional HIF-1α/HIF-1β/p300 transcription complex. Results: KCN1 specifically inhibited HIF reporter gene activity in several glioma cell lines at the nanomolar level. KCN1 also downregulated transcription of endogenous HIF-1 target genes, such as VEGF, Glut-1, and carbonic anhydrase 9, in a hypoxia-responsive element (HRE)-dependent manner. KCN1 potently inhibited the growth of subcutaneous malignant glioma tumor xenografts with minimal adverse effects on the host. It also induced a temporary survival benefit in an intracranial model of glioma but had no effect in a model of melanoma metastasis to the brain. Mechanistically, KCN1 did not downregulate the levels of HIF-1α or other components of the HIF transcriptional complex; rather, it antagonized hypoxia-inducible transcription by disrupting the interaction of HIF-1α with transcriptional coactivators p300/CBP. Conclusions: Our results suggest that the new HIF pathway inhibitor KCN1 has antitumor activity in mouse models, supporting its further translation for the treatment of human tumors displaying hypoxia or HIF overexpression. Clin Cancer Res; 18(24); 6623–33. ©2012 AACR.
Journal of Medicinal Chemistry | 2011
Suazette Reid Mooring; Hui Jin; Narra S. Devi; Adnan A. Jabbar; Stefan Kaluz; Yuan Liu; Erwin G. Van Meir; Binghe Wang
Hypoxia, a reduction in partial oxygen pressure, is a salient property of solid tumors. Hypoxia drives malignant progression and metastasis in tumors and participates in tumor resistance to radio- and chemotherapies. Hypoxia activates the hypoxia-inducible factor (HIF) family of transcription factors, which induce target genes that regulate adaptive biological processes such as anaerobic metabolism, cell motility, and angiogenesis. Clinical evidence has demonstrated that expression of HIF-1 is strongly associated with poor patient prognosis and activation of HIF-1 contributes to malignant behavior and therapeutic resistance. Consequently, HIF-1 has become an important therapeutic target for inhibition by small molecules. Herein, we describe the design and synthesis of small molecules that inhibit the HIF-1 signaling pathway. Many of these compounds exhibit inhibitory activity in the nanomolar range. Separate mechanistic studies indicate that these inhibitors do not alter HIF-1 levels but interfere with the ability of HIF-1α/HIF-1β to interact with cofactors p300/CBP to form an active transcriptional complex.
Bioorganic & Medicinal Chemistry | 2012
Jiyoung Mun; Adnan A. Jabbar; Narra S. Devi; Yuan Liu; Erwin G. Van Meir; Mark M. Goodman
We have discovered that 3,4-dimethoxy-N-[(2,2-dimethyl-2H-chromen-6-yl)methyl]-N-phenylbenzenesulfonamide, a novel small molecule HIF-1 pathway inhibitor, can antagonize tumor growth in animal models of cancer, but the treatment necessitates its delivery in a formulation, due to poor water solubility (<15 μg/mL; pH 7.4), evidencing that the chemotype needs further exploration of its amenability to additional chemical modifications for ultimate optimization of function and pharmacology. As a first step towards this goal we investigated the structure-activity relationships of 15 lipophilic 2,2-dimethyl-2H-chromene based arylsulfonamide analogs of 3,4-dimethoxy-N-[(2,2-dimethyl-2H-chromen-6-yl)methyl]-N-phenylbenzenesulfonamide to find out strategies of modification. A 3,4-dimethoxybenzenesulfonyl group in region 1 showed the strongest inhibition among five arylsulfonyl groups tested. The presence of propan-2-amine in region 2 conferred the strongest inhibitory effect of the compound on HIF-1 activated transcription in a reporter assay. These findings are important as they help define the structural motifs where the 3,4-dimethoxy-N-[(2,2-dimethyl-2H-chromen-6-yl)methyl]-N-phenylbenzenesulfonamide can be chemically modified to improve its pharmacological properties towards development as a cancer therapeutic.