Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erzsebet Borok is active.

Publication


Featured researches published by Erzsebet Borok.


Journal of Clinical Investigation | 2006

Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite

Alfonso Abizaid; Zhong-Wu Liu; Zane B. Andrews; Marya Shanabrough; Erzsebet Borok; John D. Elsworth; Robert H. Roth; Mark W. Sleeman; Marina R. Picciotto; Matthias H. Tschöp; Xiao-Bing Gao; Tamas L. Horvath

The gut hormone ghrelin targets the brain to promote food intake and adiposity. The ghrelin receptor growth hormone secretagogue 1 receptor (GHSR) is present in hypothalamic centers controlling energy metabolism as well as in the ventral tegmental area (VTA), a region important for motivational aspects of multiple behaviors, including feeding. Here we show that in mice and rats, ghrelin bound to neurons of the VTA, where it triggered increased dopamine neuronal activity, synapse formation, and dopamine turnover in the nucleus accumbens in a GHSR-dependent manner. Direct VTA administration of ghrelin also triggered feeding, while intra-VTA delivery of a selective GHSR antagonist blocked the orexigenic effect of circulating ghrelin and blunted rebound feeding following fasting. In addition, ghrelin- and GHSR-deficient mice showed attenuated feeding responses to restricted feeding schedules. Taken together, these data suggest that the mesolimbic reward circuitry is targeted by peripheral ghrelin to influence physiological mechanisms related to feeding.


Nature | 2008

UCP2 mediates ghrelin’s action on NPY/AgRP neurons by lowering free radicals

Zane B. Andrews; Zhong-Wu Liu; Nicholas Walllingford; Derek M. Erion; Erzsebet Borok; Jeffery M. Friedman; Matthias H. Tschöp; Marya Shanabrough; Gary W. Cline; Gerald I. Shulman; Anna Coppola; Xiao-Bing Gao; Tamas L. Horvath; Sabrina Diano

The gut-derived hormone ghrelin exerts its effect on the brain by regulating neuronal activity. Ghrelin-induced feeding behaviour is controlled by arcuate nucleus neurons that co-express neuropeptide Y and agouti-related protein (NPY/AgRP neurons). However, the intracellular mechanisms triggered by ghrelin to alter NPY/AgRP neuronal activity are poorly understood. Here we show that ghrelin initiates robust changes in hypothalamic mitochondrial respiration in mice that are dependent on uncoupling protein 2 (UCP2). Activation of this mitochondrial mechanism is critical for ghrelin-induced mitochondrial proliferation and electric activation of NPY/AgRP neurons, for ghrelin-triggered synaptic plasticity of pro-opiomelanocortin-expressing neurons, and for ghrelin-induced food intake. The UCP2-dependent action of ghrelin on NPY/AgRP neurons is driven by a hypothalamic fatty acid oxidation pathway involving AMPK, CPT1 and free radicals that are scavenged by UCP2. These results reveal a signalling modality connecting mitochondria-mediated effects of G-protein-coupled receptors on neuronal function and associated behaviour.


Nature Neuroscience | 2005

Agouti-related peptide-expressing neurons are mandatory for feeding

Eva Gropp; Marya Shanabrough; Erzsebet Borok; Allison W. Xu; Ruth Janoschek; Thorsten Buch; Leona Plum; Nina Balthasar; Brigitte Hampel; Ari Waisman; Gregory S. Barsh; Tamas L. Horvath; Jens C. Brüning

Multiple hormones controlling energy homeostasis regulate the expression of neuropeptide Y (NPY) and agouti-related peptide (AgRP) in the arcuate nucleus of the hypothalamus. Nevertheless, inactivation of the genes encoding NPY and/or AgRP has no impact on food intake in mice. Here we demonstrate that induced selective ablation of AgRP-expressing neurons in adult mice results in acute reduction of feeding, demonstrating direct evidence for a critical role of these neurons in the regulation of energy homeostasis.


The Journal of Neuroscience | 2004

Interaction between the Corticotropin-Releasing Factor System and Hypocretins (Orexins): A Novel Circuit Mediating Stress Response

Raphaelle Winsky-Sommerer; Akihiro Yamanaka; Sabrina Diano; Erzsebet Borok; Amanda J. Roberts; Takeshi Sakurai; Thomas S. Kilduff; Tamas L. Horvath; Luis de Lecea

The hypothalamic neuropeptides hypocretins (orexins) play a crucial role in the stability of arousal and alertness. We tested whether the hypocretinergic system is a critical component of the stress response activated by the corticotropin-releasing factor (CRF). Our results show that CRF-immunoreactive terminals make direct contact with hypocretin-expressing neurons in the lateral hypothalamus and that numerous hypocretinergic neurons express the CRF-R1/2 receptors. We also demonstrate that application of CRF to hypothalamic slices containing identified hypocretin neurons depolarizes membrane potential and increases firing rate in a subpopulation of hypocretinergic cells. CRF-induced depolarization was tetrodotoxin insensitive and was blocked by the peptidergic CRF-R1 antagonist astressin. Moreover, activation of hypocretinergic neurons in response to acute stress was severely impaired in CRF-R1 knock-out mice. Together, our data provide evidence of a direct neuroanatomical and physiological input from CRF peptidergic system onto hypocretin neurons. We propose that, after stressor stimuli, CRF stimulates the release of hypocretins and that this circuit contributes to activation and maintenance of arousal associated with the stress response.


Neuron | 2006

Serotonin reciprocally regulates melanocortin neurons to modulate food intake

Lora K. Heisler; Erin E. Jobst; Gregory M. Sutton; Ligang Zhou; Erzsebet Borok; Zoë D. Thornton-Jones; Hongyan Liu; Jeffrey M. Zigman; Nina Balthasar; Toshiro Kishi; Charlotte E. Lee; Carl J. Aschkenasi; Chen Yu Zhang; Jia Yu; Olivier Boss; Kathleen G. Mountjoy; Peter G. Clifton; Bradford B. Lowell; Jeffrey M. Friedman; Tamas L. Horvath; Andrew A. Butler; Joel K. Elmquist; Michael A. Cowley

The neural pathways through which central serotonergic systems regulate food intake and body weight remain to be fully elucidated. We report that serotonin, via action at serotonin1B receptors (5-HT1BRs), modulates the endogenous release of both agonists and antagonists of the melanocortin receptors, which are a core component of the central circuitry controlling body weight homeostasis. We also show that serotonin-induced hypophagia requires downstream activation of melanocortin 4, but not melanocortin 3, receptors. These results identify a primary mechanism underlying the serotonergic regulation of energy balance and provide an example of a centrally derived signal that reciprocally regulates melanocortin receptor agonists and antagonists in a similar manner to peripheral adiposity signals.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity.

Tamas L. Horvath; Beatrix Sarman; Cristina García-Cáceres; Pablo J. Enriori; Peter Sotonyi; Marya Shanabrough; Erzsebet Borok; Jesús Argente; Julie A. Chowen; Diego Perez-Tilve; Paul T. Pfluger; Hella S. Brönneke; Barry E. Levin; Sabrina Diano; Michael A. Cowley; Matthias H. Tschöp

The neuronal circuits involved in the regulation of feeding behavior and energy expenditure are soft-wired, reflecting the relative activity of the postsynaptic neuronal system, including the anorexigenic proopiomelanocortin (POMC)-expressing cells of the arcuate nucleus. We analyzed the synaptic input organization of the melanocortin system in lean rats that were vulnerable (DIO) or resistant (DR) to diet-induced obesity. We found a distinct difference in the quantitative and qualitative synaptology of POMC cells between DIO and DR animals, with a significantly greater number of inhibitory inputs in the POMC neurons in DIO rats compared with DR rats. When exposed to a high-fat diet (HFD), the POMC cells of DIO animals lost synapses, whereas those of DR rats recruited connections. In both DIO rats and mice, the HFD-triggered loss of synapses on POMC neurons was associated with increased glial ensheathment of the POMC perikarya. The altered synaptic organization of HFD-fed animals promoted increased POMC tone and a decrease in the stimulatory connections onto the neighboring neuropeptide Y (NPY) cells. Exposure to HFD was associated with reactive gliosis, and this affected the structure of the blood-brain barrier such that the POMC and NPY cell bodies and dendrites became less accessible to blood vessels. Taken together, these data suggest that consumption of an HFD has a major impact on the cytoarchitecture of the arcuate nucleus in vulnerable subjects, with changes that might be irreversible due to reactive gliosis.


The Journal of Neuroscience | 2010

Agrp Neurons Mediate Sirt1's Action on the Melanocortin System and Energy Balance: Roles for Sirt1 in Neuronal Firing and Synaptic Plasticity

Marcelo O. Dietrich; Catiele Antunes; Gan Geliang; Zhong-Wu Liu; Erzsebet Borok; Yongzhan Nie; Allison W. Xu; Diogo O. Souza; Qian Gao; Sabrina Diano; Xiao-Bing Gao; Tamas L. Horvath

Sirt1 has been associated with various effects of calorie restriction, including an increase in lifespan. Here we show in mice that a central regulatory component in energy metabolism, the hypothalamic melanocortin system, is affected by Sirt1, which promotes the activity and connectivity of this system resulting in negative energy balance. In adult mice, the pharmacological inhibition of brain Sirt1 activity decreased Agrp neuronal activity and the inhibitory tone on the anorexigenic POMC neurons, as measured by the number of synaptic inputs to these neurons. When a Sirt1 inhibitor (EX-527) was injected either peripherally (i.p., 10 mg/kg) or directly into the brain (i.c.v., 1.5 nmol/mouse), it decreased both food intake during the dark cycle and ghrelin-induced food intake. This effect on feeding is mediated by upstream melanocortin receptors, because the MC4R antagonist, SHU9119, reversed Sirt1s effect on food intake. This action of Sirt1 required an appropriate shift in the mitochondrial redox state: in the absence of such an adaptation enabled by the mitochondrial protein, UCP2, Sirt1-induced cellular and behavioral responses were impaired. In accordance with the pharmacological results, the selective knock-out of Sirt1 in hypothalamic Agrp neurons through the use of Cre-Lox technology decreased electric responses of Agrp neurons to ghrelin and decreased food intake, leading to decreased lean mass, fat mass, and body weight. The present data indicate that Sirt1 has a central mode of action by acting on the NPY/Agrp neurons to affect body metabolism.


The Journal of Neuroscience | 2010

Early-life experience reduces excitation to stress-responsive hypothalamic neurons and reprograms the expression of corticotropin-releasing hormone.

Aniko Korosi; Marya Shanabrough; Shawn McClelland; Zhong-Wu Liu; Erzsebet Borok; Xiao-Bing Gao; Tamas L. Horvath; Tallie Z. Baram

Increased sensory input from maternal care attenuates neuroendocrine and behavioral responses to stress long term and results in a lifelong phenotype of resilience to depression and improved cognitive function. Whereas the mechanisms of this clinically important effect remain unclear, the early, persistent suppression of the expression of the stress neurohormone corticotropin-releasing hormone (CRH) in hypothalamic neurons has been implicated as a key aspect of this experience-induced neuroplasticity. Here, we tested whether the innervation of hypothalamic CRH neurons of rat pups that received augmented maternal care was altered in a manner that might promote the suppression of CRH expression and studied the cellular mechanisms underlying this suppression. We found that the number of excitatory synapses and the frequency of miniature excitatory synaptic currents onto CRH neurons were reduced in “care-augmented” rats compared with controls, as were the levels of the glutamate vesicular transporter vGlut2. In contrast, analogous parameters of inhibitory synapses were unchanged. Levels of the transcriptional repressor neuron-restrictive silencer factor (NRSF), which negatively regulates Crh gene transcription, were markedly elevated in care-augmented rats, and chromatin immunoprecipitation demonstrated that this repressor was bound to a cognate element (neuron-restrictive silencing element) on the Crh gene. Whereas the reduced excitatory innervation of CRH-expressing neurons dissipated by adulthood, increased NRSF levels and repression of CRH expression persisted, suggesting that augmented early-life experience reprograms Crh gene expression via mechanisms involving transcriptional repression by NRSF.


Diabetes | 2010

Divergent Regulation of Energy Expenditure and Hepatic Glucose Production by Insulin Receptor in Agouti-Related Protein and POMC Neurons

Hua V. Lin; Leona Plum; Hiraku Ono; Roger Gutierrez-Juarez; Marya Shanabrough; Erzsebet Borok; Tamas L. Horvath; Luciano Rossetti; Domenico Accili

OBJECTIVE The sites of insulin action in the central nervous system that regulate glucose metabolism and energy expenditure are incompletely characterized. We have shown that mice with hypothalamic deficiency (L1) of insulin receptors (InsRs) fail to regulate hepatic glucose production (HGP) in response to insulin. RESEARCH DESIGN AND METHODS To distinguish neurons that mediate insulins effects on HGP from those that regulate energy homeostasis, we used targeted knock-ins to express InsRs in agouti-related protein (AgRP) or proopiomelanocortin (POMC) neurons of L1 mice. RESULTS Restoration of insulin action in AgRP neurons normalized insulin suppression of HGP. Surprisingly, POMC-specific InsR knock-in increased energy expenditure and locomotor activity, exacerbated insulin resistance and increased HGP, associated with decreased expression of the ATP-sensitive K+ channel (KATP channel) sulfonylurea receptor 1 subunit, and decreased inhibitory synaptic contacts on POMC neurons. CONCLUSIONS The contrasting phenotypes of InsR knock-ins in POMC and AgRP neurons suggest a branched-pathway model of hypothalamic insulin signaling in which InsR signaling in AgRP neurons decreases HGP, whereas InsR activation in POMC neurons promotes HGP and activates the melanocortinergic energy expenditure program.


Neuron | 2004

CPG2: A Brain- and Synapse-Specific Protein that Regulates the Endocytosis of Glutamate Receptors

Jeffrey R. Cottrell; Erzsebet Borok; Tamas L. Horvath; Elly Nedivi

Long-term maintenance and modification of synaptic strength involve the turnover of neurotransmitter receptors. Glutamate receptors are constitutively and acutely internalized, presumptively through clathrin-mediated receptor endocytosis. Here, we show that cpg2 is a brain-specific splice variant of the syne-1 gene that encodes a protein specifically localized to a postsynaptic endocytotic zone of excitatory synapses. RNAi-mediated CPG2 knockdown increases the number of postsynaptic clathrin-coated vesicles, some of which traffic NMDA receptors, disrupts the constitutive internalization of glutamate receptors, and inhibits the activity-induced internalization of synaptic AMPA receptors. Manipulating CPG2 levels also affects dendritic spine size, further supporting a function in regulating membrane transport. Our results suggest that CPG2 is a key component of a specialized postsynaptic endocytic mechanism devoted to the internalization of synaptic proteins, including glutamate receptors. The activity dependence and distribution of cpg2 expression further suggest that it contributes to the capacity for postsynaptic plasticity inherent to excitatory synapses.

Collaboration


Dive into the Erzsebet Borok's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allison W. Xu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elly Nedivi

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge