Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhong-Wu Liu is active.

Publication


Featured researches published by Zhong-Wu Liu.


Journal of Clinical Investigation | 2006

Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite

Alfonso Abizaid; Zhong-Wu Liu; Zane B. Andrews; Marya Shanabrough; Erzsebet Borok; John D. Elsworth; Robert H. Roth; Mark W. Sleeman; Marina R. Picciotto; Matthias H. Tschöp; Xiao-Bing Gao; Tamas L. Horvath

The gut hormone ghrelin targets the brain to promote food intake and adiposity. The ghrelin receptor growth hormone secretagogue 1 receptor (GHSR) is present in hypothalamic centers controlling energy metabolism as well as in the ventral tegmental area (VTA), a region important for motivational aspects of multiple behaviors, including feeding. Here we show that in mice and rats, ghrelin bound to neurons of the VTA, where it triggered increased dopamine neuronal activity, synapse formation, and dopamine turnover in the nucleus accumbens in a GHSR-dependent manner. Direct VTA administration of ghrelin also triggered feeding, while intra-VTA delivery of a selective GHSR antagonist blocked the orexigenic effect of circulating ghrelin and blunted rebound feeding following fasting. In addition, ghrelin- and GHSR-deficient mice showed attenuated feeding responses to restricted feeding schedules. Taken together, these data suggest that the mesolimbic reward circuitry is targeted by peripheral ghrelin to influence physiological mechanisms related to feeding.


Nature | 2008

UCP2 mediates ghrelin’s action on NPY/AgRP neurons by lowering free radicals

Zane B. Andrews; Zhong-Wu Liu; Nicholas Walllingford; Derek M. Erion; Erzsebet Borok; Jeffery M. Friedman; Matthias H. Tschöp; Marya Shanabrough; Gary W. Cline; Gerald I. Shulman; Anna Coppola; Xiao-Bing Gao; Tamas L. Horvath; Sabrina Diano

The gut-derived hormone ghrelin exerts its effect on the brain by regulating neuronal activity. Ghrelin-induced feeding behaviour is controlled by arcuate nucleus neurons that co-express neuropeptide Y and agouti-related protein (NPY/AgRP neurons). However, the intracellular mechanisms triggered by ghrelin to alter NPY/AgRP neuronal activity are poorly understood. Here we show that ghrelin initiates robust changes in hypothalamic mitochondrial respiration in mice that are dependent on uncoupling protein 2 (UCP2). Activation of this mitochondrial mechanism is critical for ghrelin-induced mitochondrial proliferation and electric activation of NPY/AgRP neurons, for ghrelin-triggered synaptic plasticity of pro-opiomelanocortin-expressing neurons, and for ghrelin-induced food intake. The UCP2-dependent action of ghrelin on NPY/AgRP neurons is driven by a hypothalamic fatty acid oxidation pathway involving AMPK, CPT1 and free radicals that are scavenged by UCP2. These results reveal a signalling modality connecting mitochondria-mediated effects of G-protein-coupled receptors on neuronal function and associated behaviour.


Cell | 2009

A Serotonin-Dependent Mechanism Explains the Leptin Regulation of Bone Mass, Appetite, and Energy Expenditure

Vijay K. Yadav; Franck Oury; Nina Suda; Zhong-Wu Liu; Xiao-Bing Gao; Cyrille Confavreux; Kristen C. Klemenhagen; Kenji F. Tanaka; Jay A. Gingrich; X. Edward Guo; Laurence H. Tecott; J. John Mann; René Hen; Tamas L. Horvath; Gerard Karsenty

Leptin inhibition of bone mass accrual requires the integrity of specific hypothalamic neurons but not expression of its receptor on these neurons. The same is true for its regulation of appetite and energy expenditure. This suggests that leptin acts elsewhere in the brain to achieve these three functions. We show here that brainstem-derived serotonin (BDS) favors bone mass accrual following its binding to Htr2c receptors on ventromedial hypothalamic neurons and appetite via Htr1a and 2b receptors on arcuate neurons. Leptin inhibits these functions and increases energy expenditure because it reduces serotonin synthesis and firing of serotonergic neurons. Accordingly, while abrogating BDS synthesis corrects the bone, appetite and energy expenditure phenotypes caused by leptin deficiency, inactivation of the leptin receptor in serotonergic neurons recapitulates them fully. This study modifies the map of leptin signaling in the brain and identifies a molecular basis for the common regulation of bone and energy metabolisms. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online.


Nature Medicine | 2011

Peroxisome proliferation-associated control of reactive oxygen species sets melanocortin tone and feeding in diet-induced obesity

Sabrina Diano; Zhong-Wu Liu; Jin Kwon Jeong; Marcelo O. Dietrich; Hai Bin Ruan; Esther S. Kim; Shigetomo Suyama; Kaitlin Kelly; Erika Gyengesi; Jack L. Arbiser; Denise D. Belsham; David A. Sarruf; Michael W. Schwartz; Anton M. Bennett; Marya Shanabrough; Charles V. Mobbs; Xiaoyong Yang; Xiao-Bing Gao; Tamas L. Horvath

Previous studies have proposed roles for hypothalamic reactive oxygen species (ROS) in the modulation of circuit activity of the melanocortin system. Here we show that suppression of ROS diminishes pro-opiomelanocortin (POMC) cell activation and promotes the activity of neuropeptide Y (NPY)- and agouti-related peptide (AgRP)-co-producing (NPY/AgRP) neurons and feeding, whereas ROS-activates POMC neurons and reduces feeding. The levels of ROS in POMC neurons were positively correlated with those of leptin in lean and ob/ob mice, a relationship that was diminished in diet-induced obese (DIO) mice. High-fat feeding resulted in proliferation of peroxisomes and elevated peroxisome proliferator–activated receptor γ (PPAR-γ) mRNA levels within the hypothalamus. The proliferation of peroxisomes in POMC neurons induced by the PPAR-γ agonist rosiglitazone decreased ROS levels and increased food intake in lean mice on high-fat diet. Conversely, the suppression of peroxisome proliferation by the PPAR antagonist GW9662 increased ROS concentrations and c-fos expression in POMC neurons. Also, it reversed high-fat feeding–triggered elevated NPY/AgRP and low POMC neuronal firing, and resulted in decreased feeding of DIO mice. Finally, central administration of ROS alone increased c-fos and phosphorylated signal transducer and activator of transcription 3 (pStat3) expression in POMC neurons and reduced feeding of DIO mice. These observations unmask a previously unknown hypothalamic cellular process associated with peroxisomes and ROS in the central regulation of energy metabolism in states of leptin resistance.


The Journal of Neuroscience | 2009

Ghrelin promotes and protects nigrostriatal dopamine function via a UCP2-dependent mitochondrial mechanism.

Zane B. Andrews; Derek M. Erion; Rudolph Beiler; Zhong-Wu Liu; Alfonso Abizaid; Jeffrey M. Zigman; John D. Elsworth; Joseph M. Savitt; Richard D. DiMarchi; Matthias Tschoep; Robert H. Roth; Xiao-Bing Gao; Tamas L. Horvath

Ghrelin targets the hypothalamus to regulate food intake and adiposity. Endogenous ghrelin receptors [growth hormone secretagogue receptor (GHSR)] are also present in extrahypothalamic sites where they promote circuit activity associated with learning and memory, and reward seeking behavior. Here, we show that the substantia nigra pars compacta (SNpc), a brain region where dopamine (DA) cell degeneration leads to Parkinsons disease (PD), expresses GHSR. Ghrelin binds to SNpc cells, electrically activates SNpc DA neurons, increases tyrosine hydroxylase mRNA and increases DA concentration in the dorsal striatum. Exogenous ghrelin administration decreased SNpc DA cell loss and restricted striatal dopamine loss after 1-methyl-4-phenyl-1,2,5,6 tetrahydropyridine (MPTP) treatment. Genetic ablation of ghrelin or the ghrelin receptor (GHSR) increased SNpc DA cell loss and lowered striatal dopamine levels after MPTP treatment, an effect that was reversed by selective reactivation of GHSR in catecholaminergic neurons. Ghrelin-induced neuroprotection was dependent on the mitochondrial redox state via uncoupling protein 2 (UCP2)-dependent alterations in mitochondrial respiration, reactive oxygen species production, and biogenesis. Together, our data reveal that peripheral ghrelin plays an important role in the maintenance and protection of normal nigrostriatal dopamine function by activating UCP2-dependent mitochondrial mechanisms. These studies support ghrelin as a novel therapeutic strategy to combat neurodegeneration, loss of appetite and body weight associated with PD. Finally, we discuss the potential implications of these studies on the link between obesity and neurodegeneration.


Cell | 2013

Mitochondrial Dynamics Controlled by Mitofusins Regulate Agrp Neuronal Activity and Diet-Induced Obesity

Marcelo O. Dietrich; Zhong-Wu Liu; Tamas L. Horvath

Mitochondria are key organelles in the maintenance of cellular energy metabolism and integrity. Here, we show that mitochondria number decrease but their size increase in orexigenic agouti-related protein (Agrp) neurons during the transition from fasted to fed to overfed state. These fusion-like dynamic changes were cell-type specific, as they occurred in the opposite direction in anorexigenic pro-opiomelanocortin (POMC) neurons. Interfering with mitochondrial fusion mechanisms in Agrp neurons by cell-selectively knocking down mitofusin 1 (Mfn1) or mitofusin 2 (Mfn2) resulted in altered mitochondria size and density in these cells. Deficiency in mitofusins impaired the electric activity of Agrp neurons during high-fat diet (HFD), an event reversed by cell-selective administration of ATP. Agrp-specific Mfn1 or Mfn2 knockout mice gained less weight when fed a HFD due to decreased fat mass. Overall, our data unmask an important role for mitochondrial dynamics governed by Mfn1 and Mfn2 in Agrp neurons in central regulation of whole-body energy metabolism.


The Journal of Neuroscience | 2010

Agrp Neurons Mediate Sirt1's Action on the Melanocortin System and Energy Balance: Roles for Sirt1 in Neuronal Firing and Synaptic Plasticity

Marcelo O. Dietrich; Catiele Antunes; Gan Geliang; Zhong-Wu Liu; Erzsebet Borok; Yongzhan Nie; Allison W. Xu; Diogo O. Souza; Qian Gao; Sabrina Diano; Xiao-Bing Gao; Tamas L. Horvath

Sirt1 has been associated with various effects of calorie restriction, including an increase in lifespan. Here we show in mice that a central regulatory component in energy metabolism, the hypothalamic melanocortin system, is affected by Sirt1, which promotes the activity and connectivity of this system resulting in negative energy balance. In adult mice, the pharmacological inhibition of brain Sirt1 activity decreased Agrp neuronal activity and the inhibitory tone on the anorexigenic POMC neurons, as measured by the number of synaptic inputs to these neurons. When a Sirt1 inhibitor (EX-527) was injected either peripherally (i.p., 10 mg/kg) or directly into the brain (i.c.v., 1.5 nmol/mouse), it decreased both food intake during the dark cycle and ghrelin-induced food intake. This effect on feeding is mediated by upstream melanocortin receptors, because the MC4R antagonist, SHU9119, reversed Sirt1s effect on food intake. This action of Sirt1 required an appropriate shift in the mitochondrial redox state: in the absence of such an adaptation enabled by the mitochondrial protein, UCP2, Sirt1-induced cellular and behavioral responses were impaired. In accordance with the pharmacological results, the selective knock-out of Sirt1 in hypothalamic Agrp neurons through the use of Cre-Lox technology decreased electric responses of Agrp neurons to ghrelin and decreased food intake, leading to decreased lean mass, fat mass, and body weight. The present data indicate that Sirt1 has a central mode of action by acting on the NPY/Agrp neurons to affect body metabolism.


The Journal of Neuroscience | 2010

Direct evidence for wake-related increases and sleep-related decreases in synaptic strength in rodent cortex.

Zhong-Wu Liu; Ugo Faraguna; Chiara Cirelli; Giulio Tononi; Xiao-Bing Gao

Despite evidence that waking is associated with net synaptic potentiation and sleep with depression, direct proof for changes in synaptic currents is lacking in large brain areas such as the cerebral cortex. By recording miniature EPSCs (mEPSCs) from frontal cortex slices of mice and rats that had been awake or asleep, we found that the frequency and amplitude of mEPSCs increased after waking and decreased after sleep, independent of time of day. Recovery sleep after deprivation also decreased mEPSCs, suggesting that sleep favors synaptic homeostasis. Since stronger synapses require more energy, space, and supplies, a generalized renormalization of synapses may be an important function of sleep.


Nature Neuroscience | 2014

Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding

Jae Geun Kim; Shigetomo Suyama; Marco Koch; Sungho Jin; Pilar Argente-Arizón; Jesús Argente; Zhong-Wu Liu; Marcelo R. Zimmer; Jin Kwon Jeong; Klara Szigeti-Buck; Yuanqing Gao; Cristina García-Cáceres; Chun-Xia Yi; Natalina Salmaso; Flora M. Vaccarino; Julie A. Chowen; Sabrina Diano; Marcelo O. Dietrich; Matthias H. Tschöp; Tamas L. Horvath

We found that leptin receptors were expressed in hypothalamic astrocytes and that their conditional deletion led to altered glial morphology and synaptic inputs onto hypothalamic neurons involved in feeding control. Leptin-regulated feeding was diminished, whereas feeding after fasting or ghrelin administration was elevated in mice with astrocyte-specific leptin receptor deficiency. These data reveal an active role of glial cells in hypothalamic synaptic remodeling and control of feeding by leptin.


The Journal of Neuroscience | 2010

Early-life experience reduces excitation to stress-responsive hypothalamic neurons and reprograms the expression of corticotropin-releasing hormone.

Aniko Korosi; Marya Shanabrough; Shawn McClelland; Zhong-Wu Liu; Erzsebet Borok; Xiao-Bing Gao; Tamas L. Horvath; Tallie Z. Baram

Increased sensory input from maternal care attenuates neuroendocrine and behavioral responses to stress long term and results in a lifelong phenotype of resilience to depression and improved cognitive function. Whereas the mechanisms of this clinically important effect remain unclear, the early, persistent suppression of the expression of the stress neurohormone corticotropin-releasing hormone (CRH) in hypothalamic neurons has been implicated as a key aspect of this experience-induced neuroplasticity. Here, we tested whether the innervation of hypothalamic CRH neurons of rat pups that received augmented maternal care was altered in a manner that might promote the suppression of CRH expression and studied the cellular mechanisms underlying this suppression. We found that the number of excitatory synapses and the frequency of miniature excitatory synaptic currents onto CRH neurons were reduced in “care-augmented” rats compared with controls, as were the levels of the glutamate vesicular transporter vGlut2. In contrast, analogous parameters of inhibitory synapses were unchanged. Levels of the transcriptional repressor neuron-restrictive silencer factor (NRSF), which negatively regulates Crh gene transcription, were markedly elevated in care-augmented rats, and chromatin immunoprecipitation demonstrated that this repressor was bound to a cognate element (neuron-restrictive silencing element) on the Crh gene. Whereas the reduced excitatory innervation of CRH-expressing neurons dissipated by adulthood, increased NRSF levels and repression of CRH expression persisted, suggesting that augmented early-life experience reprograms Crh gene expression via mechanisms involving transcriptional repression by NRSF.

Collaboration


Dive into the Zhong-Wu Liu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge