Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Esben Witting Larsen is active.

Publication


Featured researches published by Esben Witting Larsen.


Nature Communications | 2016

Spectral phase measurement of a Fano resonance using tunable attosecond pulses.

Marija Kotur; Diego Guenot; Álvaro Jiménez-Galán; David Kroon; Esben Witting Larsen; Maite Louisy; Samuel Bengtsson; Miguel Miranda; Johan Mauritsson; Cord L. Arnold; Sophie E. Canton; Mathieu Gisselbrecht; Thomas Carette; Jan Marcus Dahlström; Eva Lindroth; Alfred Maquet; Luca Argenti; Fernando Martín; Anne L'Huillier

Electron dynamics induced by resonant absorption of light is of fundamental importance in nature and has been the subject of countless studies in many scientific areas. Above the ionization threshold of atomic or molecular systems, the presence of discrete states leads to autoionization, which is an interference between two quantum paths: direct ionization and excitation of the discrete state coupled to the continuum. Traditionally studied with synchrotron radiation, the probability for autoionization exhibits a universal Fano intensity profile as a function of excitation energy. However, without additional phase information, the full temporal dynamics cannot be recovered. Here we use tunable attosecond pulses combined with weak infrared radiation in an interferometric setup to measure not only the intensity but also the phase variation of the photoionization amplitude across an autoionization resonance in argon. The phase variation can be used as a fingerprint of the interactions between the discrete state and the ionization continua, indicating a new route towards monitoring electron correlations in time.


Optica; 2(6), pp 563-566 (2015) | 2015

Gating attosecond pulses in a noncollinear geometry

Maite Louisy; Cord L. Arnold; Miguel Miranda; Esben Witting Larsen; Samuel Bengtsson; David Kroon; Marija Kotur; Diego Guenot; Linnea Rading; Piotr Rudawski; Fernando Brizuela; Filippo Campi; Byunghoon Kim; Aurélien Houard; Johan Mauritsson; Per Johnsson; Anne L'Huillier; Christoph Heyl

The efficient generation of isolated attosecond pulses (IAPs), giving access to ultrafast electron dynamics in various systems, is a key challenge in attosecond science. IAPs can be produced by confining the extreme ultraviolet emission generated by an intense laser pulse to a single field half-cycle or, as shown recently, by employing angular streaking methods. Here, we experimentally demonstrate the angular streaking of attosecond pulse trains in a noncollinear geometry, leading to the emission of angularly separated IAPs. The noncollinear geometry simplifies the separation of the fundamental laser field and the generated pulses, making this scheme promising for intracavity attosecond pulse generation, thus opening new possibilities for high-repetition-rate attosecond sources.


Journal of Physics B | 2014

Measurements of relative photoemission time delays in noble gas atoms

Diego Guenot; David Kroon; Emeric Balogh; Esben Witting Larsen; Marija Kotur; Miguel Miranda; Thomas Fordell; Per Johnsson; Johan Mauritsson; Mathieu Gisselbrecht; Katalin Varjú; Cord L. Arnold; Thomas Carette; Anatoli Kheifets; Eva Lindroth; Anne L'Huillier; Jan Marcus Dahlström

We determine relative photoemission time delays between valence electrons in different noble gas atoms (Ar, Ne and He) in an energy range between 31 and 37 eV. The atoms are ionized by an attosecond pulse train synchronized with an infrared laser field and the delays are measured using an interferometric technique. We compare our results with calculations using the random phase approximation with exchange and multi-configurational Hartree-Fock. We also investigate the influence of the different ionization angular channels.


Nature Photonics | 2017

Space–time control of free induction decay in the extreme ultraviolet

Samuel Bengtsson; Esben Witting Larsen; David Kroon; Seth Camp; Miguel Miranda; Cord L. Arnold; Anne L'Huillier; Kenneth J. Schafer; Mette B. Gaarde; Lars Rippe; Johan Mauritsson

The spatial phase and direction of extreme-ultraviolet light are controlled by an all-optical modulator based on argon gas. It works by using an infrared pulse to control the spatial and spectral phase of the free induction decay in the gas system.


Review of Scientific Instruments | 2014

High-order harmonic generation using a high-repetition-rate turnkey laser

Eleonora Lorek; Esben Witting Larsen; Christoph Heyl; Stefanos Carlström; David Paleček; Donatas Zigmantas; Johan Mauritsson

We generate high-order harmonics at high pulse repetition rates using a turnkey laser. High-order harmonics at 400 kHz are observed when argon is used as target gas. In neon, we achieve generation of photons with energies exceeding 90 eV (∼13 nm) at 20 kHz. We measure a photon flux of up to 4.4 × 10(10) photons per second per harmonic in argon at 100 kHz. Many experiments employing high-order harmonics would benefit from higher repetition rates, and the user-friendly operation opens up for applications of coherent extreme ultra-violet pulses in new research areas.


Optics Letters | 2014

Attosecond pulse walk-off in high-order harmonic generation

David Kroon; Diego Guenot; Marija Kotur; Emeric Balogh; Esben Witting Larsen; Christoph Heyl; Miguel Miranda; Mathieu Gisselbrecht; Johan Mauritsson; Per Johnsson; Katalin Varjú; Anne L'Huillier; Cord L. Arnold

We study the influence of the generation conditions on the group delay of attosecond pulses in high-order harmonic generation in gases. The group delay relative to the fundamental field is found to decrease with increasing gas pressure in the generation cell, reflecting a temporal walk-off due to the dispersive properties of the nonlinear medium. This effect is well reproduced using an on-axis phase-matching model of high-order harmonic generation in an absorbing gas.


Science Advances | 2018

High-flux soft x-ray harmonic generation from ionization-shaped few-cycle laser pulses

Allan S. Johnson; Dane R. Austin; David Wood; Christian Brahms; Andrew Gregory; Konstantin Holzner; Sebastian Jarosch; Esben Witting Larsen; Susan Parker; Christian Strüber; Peng Ye; J. W. G. Tisch; Jonathan P. Marangos

X-ray harmonics made with long-wavelength lasers reach higher fluxes and photon energies when plasma effects dominate. Laser-driven high-harmonic generation provides the only demonstrated route to generating stable, tabletop attosecond x-ray pulses but has low flux compared to other x-ray technologies. We show that high-harmonic generation can produce higher photon energies and flux by using higher laser intensities than are typical, strongly ionizing the medium and creating plasma that reshapes the driving laser field. We obtain high harmonics capable of supporting attosecond pulses up to photon energies of 600 eV and a photon flux inside the water window (284 to 540 eV) 10 times higher than previous attosecond sources. We demonstrate that operating in this regime is key for attosecond pulse generation in the x-ray range and will become increasingly important as harmonic generation moves to even longer-wavelength driving fields.


Scientific Reports | 2016

Sub-cycle ionization dynamics revealed by trajectory resolved, elliptically-driven high-order harmonic generation

Esben Witting Larsen; Stefanos Carlström; Eleonora Lorek; Christoph Heyl; David Paleček; Kenneth J. Schafer; Anne L'Huillier; Donatas Zigmantas; Johan Mauritsson

The sub-cycle dynamics of electrons driven by strong laser fields is central to the emerging field of attosecond science. We demonstrate how the dynamics can be probed through high-order harmonic generation, where different trajectories leading to the same harmonic order are initiated at different times, thereby probing different field strengths. We find large differences between the trajectories with respect to both their sensitivity to driving field ellipticity and resonant enhancement. To accurately describe the ellipticity dependence of the long trajectory harmonics we must include a sub-cycle change of the initial velocity distribution of the electron and its excursion time. The resonant enhancement is observed only for the long trajectory contribution of a particular harmonic when a window resonance in argon, which is off-resonant in the field-free case, is shifted into resonance due to a large dynamic Stark shift.


New Journal of Physics | 2016

Spatially and spectrally resolved quantum path interference with chirped driving pulses

Stefanos Carlström; Jana Preclíková; Eleonora Lorek; Esben Witting Larsen; Christoph Heyl; David Paleček; Donatas Zigmantas; Kenneth J. Schafer; Mette B. Gaarde; Johan Mauritsson

We measure spectrally and spatially resolved high-order harmonics generated in argon using chirped multi-cycle laser pulses. Using a stable, high-repetition rate laser we observe detailed interference structures in the far-field. The structures are of two kinds; off-axis interference from the long trajectory only and on-axis interference including the short and long trajectories. The former is readily visible in the far-field spectrum, modulating both the spectral and spatial profile. To access the latter, we vary the chirp of the fundamental, imparting different phases on the different trajectories, thereby changing their relative phase. Using this method together with an analytical model, we are able to explain the on-axis behaviour and access the dipole phase parameters for the short (\(\alpha_s\)) and long (\(\alpha_l\)) trajectories. The extracted results compare very well with phase parameters calculated by solving the time-dependent Schrodinger equation. Going beyond the analytical model, we are also able to successfully reproduce the off-axis interference structure.


Nature Communications | 2015

Phase Measurement of a Fano Resonance Using Tunable Attosecond Pulses

Álvaro Jiménez-Galán; Marija Kotur; Diego Guenot; David Kroon; Esben Witting Larsen; Maite Louisy; Samuel Bengtsson; Miguel Miranda; Johan Mauritsson; Cord L. Arnold; Sophie E. Canton; Mathieu Gisselbrecht; Thomas Carette; Jan Marcus Dahlström; Eva Lindroth; Alfred Maquet; Luca Argenti; Fernando Martín; Anne L'Huillier

We study photoionization of argon atoms close to the 3s(2)3p(6) -> 3s(1)3p(6)4p Fano resonance using an attosecond pulse train and a weak infrared probe field. An interferometric technique combined with tunable attosecond pulses allows us to determine the phase of the photoionization amplitude as a function of photon energy. We interpret the experimental results using an analytical two-photon model based on the Fano formalism and obtain quantitative agreement.

Collaboration


Dive into the Esben Witting Larsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge