Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eskil Elmér is active.

Publication


Featured researches published by Eskil Elmér.


Experimental Neurology | 1995

Suppressed epileptogenesis in BDNF mutant mice.

Merab Kokaia; Patrik Ernfors; Zaal Kokaia; Eskil Elmér; Rudolf Jaenisch; Olle Lindvall

Kindling is an animal model of epilepsy in which repeated electrical stimulations lead to progressive and permanent amplification of seizure activity, culminating in generalized convulsions. Each brief period of seizure activity during kindling epileptogenesis causes a marked, transient increase of the synthesis of brain-derived neurotrophic factor (BDNF) in cortical and hippocampal neurons. We find that the development of kindling is markedly suppressed in mice heterozygous for a deletion of the BDNF gene. In contrast, the maintenance of kindling is unaffected. The mutant mice show lower levels of BDNF mRNA in cortical and hippocampal neurons after seizures than do wild-type mice. Hippocampal mossy fiber sprouting is augmented in BDNF mutants but there are no other morphological abnormalities. These results show that BDNF plays an important role in establishing hyperexcitability during epileptogenesis, probably by increasing efficacy in stimulated synapses.


Experimental Neurology | 1995

Regulation of Brain-Derived Neurotrophic Factor Gene Expression after Transient Middle Cerebral Artery Occlusion with and without Brain Damage

Zaal Kokaia; Qi Zhao; Merab Kokaia; Eskil Elmér; Madis Metsis; Maj-Lis Smith; Bo K. Siesjö; Olle Lindvall

Levels of mRNA for c-fos, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), TrkB, and TrkC were studied using in situ hybridization in the rat brain at different reperfusion times after unilateral middle cerebral artery occlusion (MCAO). Short-term (15 min) MCAO, which does not cause neuronal death, induced elevated BDNF mRNA expression confined to ipsilateral frontal and cingulate cortices outside the ischemic area. With a longer duration of MCAO (2 h), which leads to cortical infarction, the increase was more marked and elevated BDNF mRNA levels were also detected bilaterally in dentate granule cells and CA1 and CA3 pyramidal neurons. Maximum expression was found after 2 h of reperfusion. At 24 h BDNF mRNA expression had returned to control values. In the ischemic core of the parietal cortex only scattered neurons were expressing high levels of BDNF mRNA after 15 min and 2 h of MCAO. Analysis of different BDNF transcripts showed that MCAO induced a marked increase of exon III mRNA but only small increases of exon I and II mRNAs in cortex and hippocampus. In contrast to BDNF mRNA, elevated expression of c-fos mRNA was observed in the entire ipsilateral cerebral cortex, including the ischemic core, after both 15 min and 2 h of MCAO. Two hours of MCAO also induced transient, bilateral increases of NGF and TrkB mRNA levels and a decrease of NT-3 mRNA expression, confined to dentate granule cells. The upregulation of BDNF mRNA expression in cortical neurons after MCAO is probably triggered by glutamate through a spreading depression-like mechanism. The lack of response of the BDNF gene in the ischemic core may be due to suppression of signal transduction or transcription factor synthesis caused by the ischemia. The observed pattern of gene expression after MCAO agrees well with a neuroprotective role of BDNF in cortical neurons. However, elevated levels of NGF and BDNF protein could also increase synaptic efficacy in the postischemic phase, which may promote epileptogenesis.


The New England Journal of Medicine | 2015

Cyclosporine before PCI in Patients with Acute Myocardial Infarction

Thien-Tri Cung; Olivier Morel; Guillaume Cayla; Gilles Rioufol; David Garcia-Dorado; Denis Angoulvant; Eric Bonnefoy-Cudraz; Patrice Guérin; Meier Elbaz; Nicolas Delarche; Pierre Coste; Gérald Vanzetto; Marc Metge; Jean-François Aupetit; Bernard Jouve; Pascal Motreff; Christophe Tron; Jean-Noël Labeque; Philippe Gabriel Steg; Yves Cottin; Grégoire Rangé; Jérome Clerc; Marc J. Claeys; P Coussement; Fabrice Prunier; Frédéric Moulin; Olivier Roth; Loic Belle; Philippe Dubois; Paul Barragan

BACKGROUND Experimental and clinical evidence suggests that cyclosporine may attenuate reperfusion injury and reduce myocardial infarct size. We aimed to test whether cyclosporine would improve clinical outcomes and prevent adverse left ventricular remodeling. METHODS In a multicenter, double-blind, randomized trial, we assigned 970 patients with an acute anterior ST-segment elevation myocardial infarction (STEMI) who were undergoing percutaneous coronary intervention (PCI) within 12 hours after symptom onset and who had complete occlusion of the culprit coronary artery to receive a bolus injection of cyclosporine (administered intravenously at a dose of 2.5 mg per kilogram of body weight) or matching placebo before coronary recanalization. The primary outcome was a composite of death from any cause, worsening of heart failure during the initial hospitalization, rehospitalization for heart failure, or adverse left ventricular remodeling at 1 year. Adverse left ventricular remodeling was defined as an increase of 15% or more in the left ventricular end-diastolic volume. RESULTS A total of 395 patients in the cyclosporine group and 396 in the placebo group received the assigned study drug and had data that could be evaluated for the primary outcome at 1 year. The rate of the primary outcome was 59.0% in the cyclosporine group and 58.1% in the control group (odds ratio, 1.04; 95% confidence interval [CI], 0.78 to 1.39; P=0.77). Cyclosporine did not reduce the incidence of the separate clinical components of the primary outcome or other events, including recurrent infarction, unstable angina, and stroke. No significant difference in the safety profile was observed between the two treatment groups. CONCLUSIONS In patients with anterior STEMI who had been referred for primary PCI, intravenous cyclosporine did not result in better clinical outcomes than those with placebo and did not prevent adverse left ventricular remodeling at 1 year. (Funded by the French Ministry of Health and NeuroVive Pharmaceutical; CIRCUS ClinicalTrials.gov number, NCT01502774; EudraCT number, 2009-013713-99.).


Journal of Bioenergetics and Biomembranes | 2004

The Nonimmunosuppressive Cyclosporin Analogs NIM811 and UNIL025 Display Nanomolar Potencies on Permeability Transition in Brain-Derived Mitochondria.

M. Hansson; Gustav Mattiasson; Roland Månsson; Jenny Karlsson; Marcus F. Keep; Peter C. Waldmeier; Urs T. Ruegg; Jean-Maurice Dumont; Kamel Besseghir; Eskil Elmér

Cyclosporin A (CsA) is highly neuroprotective in several animal models of acute neurological damage and neurodegenerative disease with inhibition of the mitochondrial permeability transition (mPT) having emerged as a possible mechanism for the observed neuroprotection. In the present study, we have evaluated two new nonimmunosuppressive cyclosporin analogs NIM811 (Novartis) and UNIL025 (Debiopharm) for their ability to inhibit mPT in rat brain-derived mitochondria. Both NIM811 and UNIL025 were found to be powerful inhibitors of calcium-induced mitochondrial swelling under energized and deenergized conditions, and the maximal effects were identical to those of native CsA. The potencies of mPT inhibition by NIM811 and UNIL025 were stronger, with almost one order of magnitude higher potency for UNIL025 compared to CsA, correlating to their respective inhibitory action of cyclophilin activity. These compounds will be instrumental in the evaluation of mPT as a central target for neuroprotection in vivo.


Brain Research | 1997

Amelioration by cyclosporin A of brain damage following 5 or 10 min of ischemia in rats subjected to preischemic hyperglycemia

Ping-An Li; Hiroyuki Uchino; Eskil Elmér; Bo K. Siesjö

It has recently been shown that the immunosuppressant cyclosporin A (CsA) dramatically ameliorates the selective neuronal necrosis which results from 10 min of forebrain ischemia in rats. Since CsA is a virtually specific blocker of the mitochondrial permeability transition (MPT) pore which is assembled under adverse conditions, such as mitochondrial calcium accumulation and oxidative stress, the results suggest that the delayed neuronal death is due to an MPT. In the present study we explored whether CsA can also ameliorate the aggravated brain damage which is observed in hyperglycemic subjects, and which encompasses rapidly evolving neuronal lesions, edema, and postischemic seizures. Anaesthetised rats with a plasma glucose concentration of approximately 13 mM were subjected to 10 min of forebrain ischemia, and allowed a recovery period of 7 days. In these animals, CsA prevented seizure from occurring and virtually eliminated neuronal necrosis. In order to allow even higher plasma glucose values (approximately 20 mM) to be studied, with long-term recovery, the duration of ischemia had to be reduced to 5 min. Again, CsA suppressed seizure activity and reduced neuronal damage. However, the effects were not as marked or consistent as in the 10 min group, suggesting that excessive tissue acidosis recruits mechanisms of damage which are not sensitive to CsA.


European Journal of Neuroscience | 1994

Brain Insults in Rats Induce Increased Expression of the BDNF Gene through Differential Use of Multiple Promoters

Zaal Kokaia; Madis Metsis; Merab Kokaia; Johan Bengzon; Eskil Elmér; Maj-Lis Smith; Tonis Timmusk; Bo K. Siesjö; Håkan Persson; Olle Lindvall

The rat brain‐derived neurotrophic factor (BDNF) gene consists of four short 5‐exons linked to separate promoters and one 3′‐exon encoding the mature BDNF protein. Using in situ hybridization we demonstrate here that kindling‐induced seizures, cerebral ischaemia and insulin‐induced hypoglycaemic coma increase BDNF mRNA levels through insult‐ and region‐specific usage of three promoters within the BDNF gene. Both brief (2 min) and longer (10 min) periods of forebrain ischaemia induced significant and major increases only of exon III mRNA in the dentate gyrus. Following hypoglycaemic coma (1 and 30 min), exon III mRNA was markedly elevated in the dentate gyrus and, in addition, exon I mRNA showed a moderate increase. Single and recurrent (n= 40) hippocampal seizures significantly increased expression of exon I, II and III mRNAs in the dentate gyrus granule cells. After recurrent seizures, including generalized convulsions, there were also major increases of both exon I and III mRNAs in the CA3 region, amygdala, piriform cortex and neocortex, whereas in the hippocampal CA1 sector marked elevations were detected only for exon III mRNA. The insults had no effect on the level of exon IV mRNA in the brain. The region‐ and insult‐specific pattern of promoter activation might be of importance for the effectiveness of protective responses as well as for the regulation of plastic changes following brain insults.


European Journal of Neuroscience | 2001

Caspase inhibitors increase short-term survival of progenitor-cell progeny in the adult rat dentate gyrus following status epilepticus

Christine T. Ekdahl; Paul Mohapel; Eskil Elmér; Olle Lindvall

The dentate gyrus (DG) is one of the few regions in the brain that continues to produce new neurons throughout adulthood. Seizures not only increase neurogenesis, but also lead to death of DG neurons. We investigated the relationship between cell death and neurogenesis following seizures in the DG of adult rats by blocking caspases, which are key components of apoptotic cell death. Multiple intracerebroventricular infusions of caspase inhibitors (pancaspase inhibitor zVADfmk, and caspase 3 and 9 inhibitor) prior to, just after, 1 day after, and 1 week following 2 h of lithium–pilocarpine‐induced status epilepticus reduced the number of terminal deoxynucleotidyl transferase‐mediated fluorescein‐dUTP nick‐end labelled (TUNEL) cells and increased the number of bromodeoxyuridine (BrdU) ‐stained proliferated cells in the subgranular zone at 1 week. The caspase inhibitor‐treated group did not differ from control at 2 days or 5 weeks following the epileptic insult. Our findings suggest that caspases modulate seizure‐induced neurogenesis in the DG, probably by regulating apoptosis of newly born neurons, and that this action can be suppressed transiently by caspase inhibitors. Furthermore, although previous studies have indicated that increased neuronal death can trigger neurogenesis, we show here that reduction in apoptotic death may be associated with increased neurogenesis.


Brain Research | 2003

Powerful cyclosporin inhibition of calcium-induced permeability transition in brain mitochondria.

M. Hansson; Tanja Persson; Hans Friberg; Marcus F. Keep; Anthony Rees; Tadeusz Wieloch; Eskil Elmér

The mitochondrial permeability transition (mPT) is considered to be an important mediator of apoptosis and necrosis, and is specifically blocked by cyclosporin A (CsA). CsA has been shown to exert a potent neuroprotective action in vivo when allowed to cross the blood-brain barrier in various animal models of acute neurological insults and neurodegenerative disease. The neuroprotective effect of CsA is considered to be mediated through specific inhibition of the mitochondrial permeability transition pore (mPTP) and through inhibition of neuronal calcineurin activity. Characterization of mPT has mainly been performed in liver and heart mitochondria, and some brain studies have reported a decreased inhibitory effect of CsA and questioned the importance of mPT in brain-derived mitochondria. We have used the de-energized model of swelling to examine the mPT in brain-derived non-synaptosomal mitochondria. Ca(2+)-induced swelling was evaluated by electron microscopy and by measurement of spectrophotometric alterations in light scattering. Permeability transition was readily induced in a majority of the mitochondria at a wide range of Ca(2+) levels and was powerfully inhibited by CsA with a half-maximal effect at approximately 23 nM CsA. The swelling kinetics and CsA effects were comparable to previous findings in de-energized liver and heart mitochondria. Careful characterization of mPT and CsA effects in brain-derived mitochondria is the first step in evaluating newly developed CsA analogues capable of crossing the blood-brain barrier and preferentially entering the brain. The importance of CsA causing a shift of the mitochondrial sensitivity to Ca(2+) in neurological disorders is discussed.


Free Radical Biology and Medicine | 2008

Calcium-induced generation of reactive oxygen species in brain mitochondria is mediated by permeability transition.

M. Hansson; Roland Månsson; Saori Morota; Hiroyuki Uchino; Therese Kallur; Tetsuo Sumi; Nagao Ishii; Motohide Shimazu; Marcus F. Keep; Alexandr Jegorov; Eskil Elmér

Mitochondrial uptake of calcium in excitotoxicity is associated with subsequent increase in reactive oxygen species (ROS) generation and delayed cellular calcium deregulation in ischemic and neurodegenerative insults. The mechanisms linking mitochondrial calcium uptake and ROS production remain unknown but activation of the mitochondrial permeability transition (mPT) may be one such mechanism. In the present study, calcium increased ROS generation in isolated rodent brain and human liver mitochondria undergoing mPT despite an associated loss of membrane potential, NADH and respiration. Unspecific permeabilization of the inner mitochondrial membrane by alamethicin likewise increased ROS independently of calcium, and the ROS increase was further potentiated if NAD(H) was added to the system. Importantly, calcium per se did not induce a ROS increase unless mPT was triggered. Twenty-one cyclosporin A analogs were evaluated for inhibition of calcium-induced ROS and their efficacy clearly paralleled their potency of inhibiting mPT-mediated mitochondrial swelling. We conclude that while intact respiring mitochondria possess powerful antioxidant capability, mPT induces a dysregulated oxidative state with loss of GSH- and NADPH-dependent ROS detoxification. We propose that mPT is a significant cause of pathological ROS generation in excitotoxic cell death.


Molecular Brain Research | 1996

Regional brain-derived neurotrophic factor mRNA and protein levels following transient forebrain ischemia in the rat

Zaal Kokaia; Hiroyuki Nawa; Hiroyuki Uchino; Eskil Elmér; Merab Kokaia; J Carnahan; Maj-Lis Smith; Bo K. Siesjö; Olle Lindvall

Levels of BDNF mRNA and protein were measured in the rat brain using in situ hybridization and a two-site enzyme immunoassay. Under basal conditions, the highest BDNF concentration was found in the dentate gyrus (88 ng/g), while the levels in CA3 (50 ng/g), CA1 (18 ng/g) and parietal cortex (8 ng/g) were markedly lower. Following 10 min of forebrain ischemia, BDNF protein increased transiently in the dentate gyrus (to 124% of control at 6 h after the insult) and CA3 region (to 131% of control, at 1 week after the insult). In CA1 and parietal cortex, BDNF protein decreased to 73-75% of control at 24 h. In contrast, BDNF mRNA expression in dentate granule cells and CA3 pyramidal layer was transiently elevated to 287 and 293% of control, respectively, at 2 h, whereas no change was detected in CA1 or neocortex. The regional BDNF protein levels shown here correlate at least partly with regional differences in cellular resistance to ischemic damage, which is consistent with the hypothesis of a neuroprotective role of BDNF.

Collaboration


Dive into the Eskil Elmér's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge