Sarah Piel
Lund University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sarah Piel.
Acta Physiologica | 2015
Sarah Piel; Johannes K. Ehinger; Eskil Elmér; M. Hansson
Metformin is a widely used antidiabetic drug associated with the rare side effect of lactic acidosis which has been proposed to be linked to drug‐induced mitochondrial dysfunction. Using respirometry, the aim of this study was to evaluate mitochondrial toxicity of metformin to human blood cells in relation to that of phenformin, a biguanide analogue withdrawn in most countries due to a high incidence of lactic acidosis.
Nature Communications | 2016
Johannes K. Ehinger; Sarah Piel; Rhonan Lee Ford; Michael Karlsson; Fredrik Sjövall; Eleonor Åsander Frostner; Saori Morota; Robert W. Taylor; Doug M. Turnbull; Clive L. Cornell; Steven James Moss; Carsten Metzsch; M. Hansson; Hans Fliri; Eskil Elmér
Mitochondrial complex I (CI) deficiency is the most prevalent defect in the respiratory chain in paediatric mitochondrial disease. This heterogeneous group of diseases includes serious or fatal neurological presentations such as Leigh syndrome and there are very limited evidence-based treatment options available. Here we describe that cell membrane-permeable prodrugs of the complex II substrate succinate increase ATP-linked mitochondrial respiration in CI-deficient human blood cells, fibroblasts and heart fibres. Lactate accumulation in platelets due to rotenone-induced CI inhibition is reversed and rotenone-induced increase in lactate:pyruvate ratio in white blood cells is alleviated. Metabolomic analyses demonstrate delivery and metabolism of [13C]succinate. In Leigh syndrome patient fibroblasts, with a recessive NDUFS2 mutation, respiration and spare respiratory capacity are increased by prodrug administration. We conclude that prodrug-delivered succinate bypasses CI and supports electron transport, membrane potential and ATP production. This strategy offers a potential future therapy for metabolic decompensation due to mitochondrial CI dysfunction.
BMC Cell Biology | 2013
Saori Morota; Sarah Piel; M. Hansson
BackgroundIschemic preconditioning has been proposed to involve changes in mitochondrial H+ and K+ fluxes, in particular through activation of uncoupling proteins and ATP-sensitive K+ channels (MitoKATP). The objectives of the present study were to explore how increased H+ and K+ fluxes influence heart mitochondrial physiology with regard to production and scavenging of reactive oxygen species (ROS), volume changes and resistance to calcium-induced mitochondrial permeability transition (mPT).ResultsIsolated rat heart mitochondria were exposed to a wide concentration range of the protonophore CCCP or the potassium ionophore valinomycin to induce increased H+ and K+ conductance, respectively. Simultaneous monitoring of mitochondrial respiration and calcium retention capacity (CRC) demonstrated that the relative increase in respiration caused by valinomycin or CCCP correlated with a decrease in CRC, and that no level of respiratory uncoupling was associated with enhanced resistance to mPT. Mitochondria suspended in hyperosmolar buffer demonstrated a dose-dependent reduction in CRC with increasing osmolarity. However, mitochondria in hypoosmolar buffer to increase matrix volume did not display increased CRC. ROS generation was reduced by both K+- and H+-mediated respiratory uncoupling. The ability of heart mitochondria to detoxify H2O2 was substantially greater than the production rate. The H2O2 detoxification was dependent on respiratory substrates and was dramatically decreased following calcium-induced mPT, but was unaffected by uncoupling via increased K+ and H+ conductance.ConclusionIt is concluded that respiratory uncoupling is not directly beneficial to rat heart mitochondrial resistance to calcium overload irrespective of whether H+ or K+ conductance is increased. The negative effects of respiratory uncoupling thus probably outweigh the reduction in ROS generation and a potential positive effect by increased matrix volume, resulting in a net sensitization of heart mitochondria to mPT activation.
PLOS ONE | 2016
Andrew C. McCourt; Lovisa Jakobsson; Sara Larsson; Cecilia Holm; Sarah Piel; Eskil Elmér; Maria Björkqvist
Huntington’s disease (HD) is a fatal, autosomal dominantly inherited neurodegenerative disorder, characterised not only by progressive cognitive, motor and psychiatric impairments, but also of peripheral pathology. In both human HD and in mouse models of HD there is evidence of increased energy expenditure and weight loss, alongside altered body composition. Unlike white adipose tissue (WAT), brown adipose tissue (BAT), as well as brown-like cells within WAT, expresses the mitochondrial protein, uncoupling protein 1 (UCP1). UCP1 enables dissociation of cellular respiration from ATP utilization, resulting in the release of stored energy as heat. Hyperplasia of brown/beige cells in WAT has been suggested to enhance energy expenditure. In this study, we therefore investigated the gene expression profile, histological appearance, response to cold challenge and functional aspects of WAT in the R6/2 HD mouse model and selected WAT gene expression in the full-length Q175 mouse model of HD. WAT from R6/2 mice contained significantly more brown-like adipocyte regions and had a gene profile suggestive of the presence of brown-like adipocytes, such as higher Ucp1 expression. Cold exposure induced Ucp1 expression in R6/2 inguinal WAT to a markedly higher degree as compared to the thermogenic response in WT WAT. Alongside this, gene expression of transcription factors (Zfp516 and Pparα), important inducers of WAT browning, were increased in R6/2 inguinal WAT, and Creb1 was highlighted as a key transcription factor in HD. In addition to increased WAT Ucp1 expression, a trend towards increased mitochondrial oxygen consumption due to enhanced uncoupling activity was found in inguinal R6/2 WAT. Key gene expressional changes (increased expression of (Zfp516 and Pparα)) were replicated in inguinal WAT obtained from Q175 mice. In summary, for the first time, we here show that HD mouse WAT undergoes a process of browning, resulting in molecular and functional alterations that may contribute to the weight loss and altered metabolism observed with disease progression.
Mitochondrion | 2016
Michael Karlsson; Johannes K. Ehinger; Sarah Piel; Fredrik Sjövall; Johanna Henriksnäs; Urban Höglund; M. Hansson; Eskil Elmér
Metabolic crisis is a clinical condition primarily affecting patients with inherent mitochondrial dysfunction in situations of augmented energy demand. To model this, ten pigs received an infusion of rotenone, a mitochondrial complex I inhibitor, or vehicle. Clinical parameters, blood gases, continuous indirect calorimetry, in vivo muscle oxygen tension, ex vivo mitochondrial respiration and metabolomics were assessed. Rotenone induced a progressive increase in blood lactate which was paralleled by an increase in oxygen tension in venous blood and skeletal muscle. There was an initial decrease in whole body oxygen utilization, and there was a trend towards inhibited mitochondrial respiration in platelets. While levels of succinate were decreased, other intermediates of glycolysis and the TCA cycle were increased. This model may be suited for evaluating pharmaceutical interventions aimed at counteracting metabolic changes due to complex I dysfunction.
Intensive Care Medicine Experimental | 2018
Sarah Piel; Johannes K. Ehinger; Imen Chamkha; Eleonor Åsander Frostner; Fredrik Sjövall; Eskil Elmér; M. Hansson
BackgroundMetformin is the most common pharmacological treatment for type 2 diabetes. It is considered safe but has been associated with the development of lactic acidosis under circumstances where plasma concentrations exceed therapeutic levels. Metformin-induced lactic acidosis has been linked to the drug’s toxic effect on mitochondrial function. Current treatment strategies aim to remove the drug and correct for the acidosis. With a mortality of 20%, complementary treatment strategies are needed. In this study, it was investigated whether targeting mitochondria with pharmacological agents that bypass metformin-induced mitochondrial dysfunction can counteract the energetic deficit linked to toxic doses of metformin.MethodsThe redox agent methylene blue and the cell-permeable succinate prodrug NV118 were evaluated by measuring mitochondrial respiration and lactate production of human platelets exposed to metformin and co-treated with either of the two pharmacological bypass agents.ResultsThe cell-permeable succinate prodrug NV118 increased mitochondrial respiration which was linked to phosphorylation by the ATP-synthase and alleviated the increase in lactate production induced by toxic doses of metformin. The redox agent methylene blue, in contrast, failed to mitigate the metformin-induced changes in mitochondrial respiration and lactate generation.ConclusionsThe cell-permeable succinate prodrug NV118 bypassed the mitochondrial dysfunction and counteracted the energy deficit associated with toxic doses of metformin. If similar effects of NV118 prove translatable to an in vivo effect, this pharmacological strategy presents as a promising complementary treatment for patients with metformin-induced lactic acidosis.
Archive | 2015
Eskil Elmér; M. Hansson; Karl Henrik Johannes Ehinger; Sarah Piel; Steven James Moss
Archive | 2018
Sarah Piel
Archive | 2017
Steven James Moss; Eskil Elmér; M. Hansson; Karl Henrik Johannes Ehinger; Karl Michael Karlsson; Sarah Piel
Archive | 2017
Steven James Moss; Eskil Elmér; M. Hansson; Karl Henrik Johannes Ehinger; Karl Michael Karlsson; Sarah Piel