Esteve Padrós
Autonomous University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Esteve Padrós.
Applied Spectroscopy | 2005
Víctor A. Lórenz-Fonfría; Esteve Padrós
Absorbance and difference infrared spectra are often acquired aiming to characterize protein structure and structural changes of proteins upon ligand binding, as well as for many other chemical and biochemical studies. Their analysis requires as a first step the identification of the component bands (number, position, and area) and as a second step their assignment. The first step of the analysis is challenged by the habitually strong band overlap in infrared spectra. Therefore, it is useful to make use of a mathematical method able to narrow the component bands to the extent to eliminate, or at least reduce, the band overlap. Additionally, to be of general applicability this method should permit negative values for the solution. We present a maximum entropy deconvolution approach for the band-narrowing of absorbance and difference spectra showing the required characteristics, which uses the generalized negative Burg-entropy (Itakura–Saïto discrepancy) generalized for difference spectra. We present results on synthetic noisy absorbance and difference spectra, as well as on experimental infrared spectra from the membrane protein bacteriorhodopsin.
FEBS Letters | 1999
Carolina Sanz; Tzvetana Lazarova; Francesc Sepulcre; Rafael Gonzalez-Moreno; J.L. Bourdelande; Enric Querol; Esteve Padrós
The quadruple bacteriorhodopsin (BR) mutant E9Q+E74Q+E194Q+E204Q shows a λ max of about 500 nm in water at neutral pH and a great influence of pH and salts on the visible absorption spectrum. Accessibility to the Schiff base is strongly increased, as detected by the rapid bleaching effect of hydroxylamine in the dark as well as in light. Both the proton release kinetics and the photocycle are altered, as indicated by a delayed proton release after proton uptake and changed M kinetics. Moreover, affinity of the color‐controlling cation(s) is found to be decreased. We suggest that the four Glu side chains are essential elements of the extracellular structure of BR.
Biophysical Journal | 2000
Natàlia Dave; Agnès Troullier; Isabelle Mus-Veteau; Mireia Duñach; Gérard Leblanc; Esteve Padrós
The structure of the melibiose permease from Escherichia coli has been investigated by Fourier transform infrared spectroscopy, using the purified transporter either in the solubilized state or reconstituted in E. coli lipids. In both instances, the spectra suggest that the permease secondary structure is dominated by alpha-helical components (up to 50%) and contains beta-structure (20%) and additional components assigned to turns, 3(10) helix, and nonordered structures (30%). Two distinct and strong absorption bands are recorded at 1660 and 1653 cm(-1), i.e., in the usual range of absorption of helices of membrane proteins. Moreover, conditions that preserve the transporter functionality (reconstitution in liposomes or solubilization with dodecyl maltoside) make possible the detection of two separate alpha-helical bands of comparable intensity. In contrast, a single intense band, centered at approximately 1656 cm(-1), is recorded from the inactive permease in Triton X-100, or a merged and broader signal is recorded after the solubilized protein is heated in dodecyl maltoside. It is suggested that in the functional permease, distinct signals at 1660 and 1653 cm(-1) arise from two different populations of alpha-helical domains. Furthermore, the sodium- and/or melibiose-induced changes in amide I line shape, and in particular, in the relative amplitudes of the 1660 and 1653 cm(-1) bands, indicate that the secondary structure is modified during the early step of sugar transport. Finally, the observation that approximately 80% of the backbone amide protons can be exchanged suggests high conformational flexibility and/or a large accessibility of the membrane domains to the aqueous solvent.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Meritxell Granell; Xavier León; Gérard Leblanc; Esteve Padrós; Víctor A. Lórenz-Fonfría
The melibiose carrier from Escherichia coli (MelB) couples the accumulation of the disaccharide melibiose to the downhill entry of H+, Na+, or Li+. In this work, substrate-induced FTIR difference spectroscopy was used in combination with fluorescence spectroscopy to quantitatively compare the conformational properties of MelB mutants, implicated previously in sodium binding, with those of a fully functional Cys-less MelB permease. The results first suggest that Asp55 and Asp59 are essential ligands for Na+ binding. Secondly, though Asp124 is not essential for Na+ binding, this acidic residue may play a critical role, possibly by its interaction with the bound cation, in the full Na+-induced conformational changes required for efficient coupling between the ion- and sugar-binding sites; this residue may also be a sugar ligand. Thirdly, Asp19 does not participate in Na+ binding but it is a melibiose ligand. The location of these residues in two independent threading models of MelB is consistent with their proposed role.
Trends in Biochemical Sciences | 1984
Esteve Padrós; Mireia Duñach; Antoni Morros; Manuel Sabés; Joan Mañosa
Fourth-derivative spectrophotometry offers several advantages over classical absorption or difference spectrophotometry in examining the characteristics of aromatic amino acids in proteins. The basic principles of the technique and its applications are outlined.
Biophysical Journal | 2000
Tzvetana Lazarova; Carolina Sanz; Enric Querol; Esteve Padrós
The role of the extracellular Glu side chains of bacteriorhodopsin in the proton transport mechanism has been studied using the single mutants E9Q, E74Q, E194Q, and E204Q; the triple mutant E9Q/E194Q/E204Q; and the quadruple mutant E9Q/E74Q/E194Q/E204Q. Steady-state difference and deconvoluted Fourier transform infrared spectroscopy has been applied to analyze the M- and N-like intermediates in membrane films maintained at a controlled humidity, at 243 and 277 K at alkaline pH. The mutants E9Q and E74Q gave spectra similar to that of wild type, whereas E194Q, E9Q/E194Q/E204Q, and E9Q/E74Q/E194Q/E204Q showed at 277 K a N-like intermediate with a single negative peak at 1742 cm(-1), indicating that Asp(85) and Asp(96) are deprotonated. Under the same conditions E204Q showed a positive peak at 1762 cm(-1) and a negative peak at 1742 cm(-1), revealing the presence of protonated Asp(85) (in an M intermediate environment) and deprotonated Asp(96). These results indicate that in E194Q-containing mutants, the second increase in the Asp(85) pK(a) is inhibited because of lack of deprotonation of the proton release group. Our data suggest that Glu(194) is the group that controls the pK(a) of Asp(85).
Biochimica et Biophysica Acta | 1984
Esteve Padrós; Mireia Duñach; Manuel Sabés
The effects produced on bacteriorhodopsin by low concentrations of several detergents have been studied by absorption and fourth-derivative spectrophotometry. Sodium dodecyl sulfate induces the appearance of the blue form of bacteriorhodopsin (lambda max = 600 nm) at pH values up to 7.0 in a reversible manner. The apparent pK of the purple-to-blue transition raised with increasing concentration of SDS. Of the other detergents tested, only sodium dodecyl-N-sarcosinate showed a slight red-shift of the absorption band to 580 nm, whereas sodium taurocholate, Triton X-100 and cetyltrimethylammonium bromide did not favour the appearance of the blue form. The effect of SDS was found to be consistent with a localized conformational change that moves away the counter-ion of the protonated Schiff base.
Applied Spectroscopy | 2009
Víctor A. Lórenz-Fonfría; Esteve Padrós
Overlapped bands often appear in applications of infrared spectroscopy, for instance in the analysis of the amide I band of proteins. Fourier self-deconvolution (FSD) is a popular band-narrowing mathematical method, allowing for the resolution of overlapped bands. The filter function used in FSD plays a significant role in the factor by which the deconvolved bands are actually narrowed (the effective narrowing), as well as in the final signal-to-noise degradation induced by FSD. Moreover, the filter function determines, to a good extent, the band-shape of the deconvolved bands. For instance, the intensity of the harmful side-lobule oscillations that appear in over-deconvolution depends importantly on the filter function used. In the present paper we characterized the resulting band shape, effective narrowing, and signal-to-noise degradation in infra-, self-, and over-deconvolution conditions for several filter functions: Triangle, Bessel, Hanning, Gaussian, Sinc2, and Triangle2. We also introduced and characterized new filters based on the modification of the Blackmann filter. Our conclusion is that the Bessel filter (in infra-, self-, and mild over-deconvolution), the newly introduced BL3 filter (in self- and mild/moderate over-deconvolution), and the Gaussian filter (in moderate/strong over-deconvolution) are the most suitable filter functions to be used in FSD.
Nanotechnology | 2007
Ignacio Casuso; Laura Fumagalli; J. Samitier; Esteve Padrós; L. Reggiani; Vladimir Akimov; G. Gomila
We present a reliable methodology to perform electron transport measurements at the nanoscale on supported biomembranes by conductive atomic force microscopy (C-AFM). It allows measurement of both (a) non-destructive conductive maps and (b) force controlled current-voltage characteristics in wide voltage bias range in a reproducible way. Tests experiments were performed on purple membrane monolayers, a two-dimensional (2D) crystal lattice of the transmembrane protein bacteriorhodopsin. Non-destructive conductive images show uniform conductivity of the membrane with isolated nanometric conduction defects. Current-voltage characteristics under different compression conditions show non-resonant tunneling electron transport properties, with two different conduction regimes as a function of the applied bias, in excellent agreement with theoretical predictions. This methodology opens the possibility for a detailed study of electron transport properties of supported biological membranes, and of soft materials in general.
Biophysical Journal | 2004
Hazime Saitô; Satoru Yamaguchi; Keiji Ogawa; Satoru Tuzi; M. Márquez; Carolina Sanz; Esteve Padrós
We recorded (13)C NMR spectra of [3-(13)C]Ala- and [1-(13)C]Val-labeled bacteriorhodopsin (bR) and a variety of its mutants, E9Q, E74Q, E194Q/E204Q (2Glu), E9Q/E194Q/E204Q (3Glu), and E9Q/E74Q/E194Q/E204Q (4Glu), to clarify contributions of the extracellular (EC) Glu residues to the conformation and dynamics of bR. Replacement of Glu-9 or Glu-74 and Glu-194/204 at the EC surface by glutamine(s) induced significant conformational changes in the cytoplasmic (CP) surface structure. These changes occurred in the C-terminal alpha-helix and loops, and also those of the EC surface, as viewed from (13)C NMR spectra of [3-(13)C]Ala- and [1-(13)C]Val-labeled proteins. Additional conformational changes in the transmembrane alpha-helices were induced as modified retinal-protein interactions for multiple mutants involving the E194Q/E204Q pair. Significant dynamic changes were induced for the triple or quadruple mutants, as shown by broadened (13)C NMR peaks of [1-(13)C]Val-labeled proteins. These changes were due to acquired global fluctuation motions of the order of 10(-4)-10(-5) s as a result of disorganized trimeric form. In such mutants (13)C NMR signals from Val residues of [1-(13)C]Val-labeled triple and quadruple mutants near the CP and EC surfaces (including 8.7-A depth from the surface) were substantially suppressed, as shown by comparative (13)C NMR studies with and without 40 micro M Mn(2+) ion. We conclude that these Glu residues at the EC surface play an important role in maintaining the native secondary structure of bR in the purple membrane.