Mireia Duñach
Autonomous University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mireia Duñach.
Journal of Biological Chemistry | 1999
Santiago Roura; Susana Miravet; José Piedra; Antonio García de Herreros; Mireia Duñach
Alteration of cadherin-mediated cell-cell adhesion is frequently associated to tyrosine phosphorylation of p120- and β-catenins. We have examined the role of this modification in these proteins in the control of β-catenin/E-cadherin binding usingin vitro assays with recombinant proteins. Recombinant pp60c-src efficiently phosphorylated both catenins in vitro, with stoichiometries of 1.5 and 2.0 mol of phosphate/mol of protein for β-catenin and p120-catenin, respectively. pp60c-src phosphorylation had opposing effects on the affinities of β-catenin and p120 for the cytosolic domain of E-cadherin; it decreased (in the case of β-catenin) or increased (for p120) catenin/E-cadherin binding. However, a role for p120-catenin in the modulation of β-catenin/E-cadherin binding was not observed, since addition of phosphorylated p120-catenin did not modify the affinity of phosphorylated (or unphosphorylated) β-catenin for E-cadherin. The phosphorylated Tyr residues were identified as Tyr-86 and Tyr-654. Experiments using point mutants in these two residues indicated that, although Tyr-86 was a better substrate for pp60c-src , only modification of Tyr-654 was relevant for the interaction with E-cadherin. Transient transfections of different mutants demonstrated that Tyr-654 is phosphorylated in conditions in which adherens junctions are disrupted and evidenced that binding of β-catenin to E-cadherin in vivo is controlled by phosphorylation of β-catenin Tyr-654.
Molecular and Cellular Biology | 2003
José Piedra; Susana Miravet; Julio Castaño; Héctor G. Pálmer; Nora Heisterkamp; Antonio García de Herreros; Mireia Duñach
ABSTRACT β-Catenin has a key role in the formation of adherens junction through its interactions with E-cadherin and α-catenin. We show here that interaction of β-catenin with α-catenin is regulated by the phosphorylation of β-catenin Tyr-142. This residue can be phosphorylated in vitro by Fer or Fyn tyrosine kinases. Transfection of these kinases to epithelial cells disrupted the association between both catenins. We have also examined whether these kinases are involved in the regulation of this interaction by K-ras. Stable transfectants of the K-ras oncogene in intestinal epithelial IEC18 cells were generated which show little α-catenin-β-catenin association with respect to control clones; this effect is accompanied by increased Tyr-142 phosphorylation and activation of Fer and Fyn kinases. As reported for Fer, Fyn kinase is constitutively bound to p120 catenin; expression of K-ras induces the phosphorylation of p120 catenin on tyrosine residues increasing its affinity for E-cadherin and, consequently, promotes the association of Fyn with the adherens junction complex. Yes tyrosine kinase also binds to p120 catenin but only upon activation, and stimulates Fer and Fyn tyrosine kinases. These results indicate that p120 catenin acts as a docking protein facilitating the activation of Fer/Fyn tyrosine kinases by Yes and demonstrate the role of these p120 catenin-associated kinases in the regulation of β-catenin-α-catenin interaction.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Verónica Rodilla; Alberto Villanueva; Antònia Obrador-Hevia; Àlex Robert-Moreno; Vanessa Fernández-Majada; Andrea Grilli; Nuria Lopez-Bigas; Nicolás Bellora; M. Mar Albà; Ferran Torres; Mireia Duñach; Xavier Sanjuan; Sara González; Thomas Gridley; Gabriel Capellá; Anna Bigas; Lluis Espinosa
Notch has been linked to β-catenin-dependent tumorigenesis; however, the mechanisms leading to Notch activation and the contribution of the Notch pathway to colorectal cancer is not yet understood. By microarray analysis, we have identified a group of genes downstream of Wnt/β-catenin (down-regulated when blocking Wnt/β-catenin) that are directly regulated by Notch (repressed by γ-secretase inhibitors and up-regulated by active Notch1 in the absence of β-catenin signaling). We demonstrate that Notch is downstream of Wnt in colorectal cancer cells through β-catenin-mediated transcriptional activation of the Notch-ligand Jagged1. Consistently, expression of activated Notch1 partially reverts the effects of blocking Wnt/β-catenin pathway in tumors implanted s.c. in nude mice. Crossing APCMin/+ with Jagged1+/Δ mice is sufficient to significantly reduce the size of the polyps arising in the APC mutant background indicating that Notch is an essential modulator of tumorigenesis induced by nuclear β-catenin. We show that this mechanism is operating in human tumors from Familial Adenomatous Polyposis patients. We conclude that Notch activation, accomplished by β-catenin-mediated up-regulation of Jagged1, is required for tumorigenesis in the intestine. The Notch-specific genetic signature is sufficient to block differentiation and promote vasculogenesis in tumors whereas proliferation depends on both pathways.
Journal of Biological Chemistry | 2001
José Piedra; Daniel Martínez; Julio Castaño; Susana Miravet; Mireia Duñach; Antonio García de Herreros
β-Catenin plays a dual role as a key effector in the regulation of adherens junctions and as a transcriptional coactivator. Phosphorylation of Tyr-654, a residue placed in the last armadillo repeat of β-catenin, decreases its binding to E-cadherin. We show here that phosphorylation of Tyr-654 also stimulates the association of β-catenin to the basal transcription factor TATA-binding protein. The structural bases of these different affinities were investigated. Our results indicate that the β-catenin C-terminal tail interacts with the armadillo repeat domain, hindering the association of the armadillo region to the TATA-binding protein or to E-cadherin. Phosphorylation of β-catenin Tyr-654 decreases armadillo-C-terminal tail association, uncovering the last armadillo repeats. In a C-terminal-depleted β-catenin, the presence of a negative charge at Tyr-654 does not affect the interaction of the TATA-binding protein to the armadillo domain. However, in the case of E-cadherin, the establishment of ion pairs dominates its association with β-catenin, and its binding is greatly dependent on the absence of a negative charge at Tyr-654. Thus, phosphorylation of Tyr-654 blocks the Ecadherin-β-catenin interaction, even though the steric hindrance of the C-tail is no longer present. These results explain how phosphorylation of β-catenin in Tyr-654 modifies the tertiary structure of this protein and the interaction with its different partners.
The EMBO Journal | 2007
Addolorata Coluccia; Angelo Vacca; Mireia Duñach; Luca Mologni; Sara Redaelli; Victor Bustos; Daniela Benati; Lorenzo A. Pinna; Carlo Gambacorti-Passerini
Self‐renewal of Bcr‐Abl+ chronic myeloid leukemia (CML) cells is sustained by a nuclear activated serine/threonine‐(S/T) unphosphorylated β‐catenin. Although β‐catenin can be tyrosine (Y)‐phosphorylated, the occurrence and biological relevance of this covalent modification in Bcr‐Abl‐associated leukemogenesis is unknown. Here we show that Bcr‐Abl levels control the degree of β‐catenin protein stabilization by affecting its Y/S/T‐phospho content in CML cells. Bcr‐Abl physically interacts with β‐catenin, and its oncogenic tyrosine kinase activity is required to phosphorylate β‐catenin at Y86 and Y654 residues. This Y‐phospho β‐catenin binds to the TCF4 transcription factor, thus representing a transcriptionally active pool. Imatinib, a Bcr‐Abl antagonist, impairs the β‐catenin/TCF‐related transcription causing a rapid cytosolic retention of Y‐unphosphorylated β‐catenin, which presents an increased binding affinity for the Axin/GSK3β complex. Although Bcr‐Abl does not affect GSK3β autophosphorylation, it prevents, through its effect on β‐catenin Y phosphorylation, Axin/GSK3β binding to β‐catenin and its subsequent S/T phosphorylation. Silencing of β‐catenin by small interfering RNA inhibited proliferation and clonogenicity of Bcr‐Abl+ CML cells, in synergism with Imatinib. These findings indicate the Bcr‐Abl triggered Y phosphorylation of β‐catenin as a new mechanism responsible for its protein stabilization and nuclear signalling activation in CML.
Journal of Cell Science | 2008
Guiomar Solanas; Montserrat Porta-de-la-Riva; Cristina Agustí; David Casagolda; Francisco Sánchez-Aguilera; María Jesús Larriba; Ferran Pons; Sandra Peiró; Maria Escrivà; Alberto Muñoz; Mireia Duñach; Antonio García de Herreros; Josep Baulida
E-cadherin and its transcriptional repressor Snail1 (Snai1) are two factors that control epithelial phenotype. Expression of Snail1 promotes the conversion of epithelial cells to mesenchymal cells, and occurs concomitantly with the downregulation of E-cadherin and the upregulation of expression of mesenchymal genes such as those encoding fibronectin and LEF1. We studied the molecular mechanism controlling the expression of these genes in mesenchymal cells. Forced expression of E-cadherin strongly downregulated fibronectin and LEF1 RNA levels, indicating that E-cadherin-sensitive factors are involved in the transcription of these genes. E-cadherin overexpression decreased the transcriptional activity of the fibronectin promoter and reduced the interaction of β-catenin and NF-κB with this promoter. Similar to β-catenin, NF-κB was found, by co-immunoprecipitation and pull-down assays, to be associated with E-cadherin and other cell-adhesion components. Interaction of the NF-κB p65 subunit with E-cadherin or β-catenin was reduced when adherens junctions were disrupted by K-ras overexpression or by E-cadherin depletion using siRNA. These conditions did not affect the association of p65 with the NF-κB inhibitor IκBα. The functional significance of these results was stressed by the stimulation of NF-κB transcriptional activity, both basal and TNF-α-stimulated, induced by an E-cadherin siRNA. Therefore, these results demonstrate that E-cadherin not only controls the transcriptional activity of β-catenin but also that of NF-κB. They indicate too that binding of this latter factor to the adherens junctional complex prevents the transcription of mesenchymal genes.
Molecular and Cellular Biology | 2007
Julio Castaño; Guiomar Solanas; David Casagolda; Imma Raurell; Patricia Villagrasa; Xosé R. Bustelo; Antonio García de Herreros; Mireia Duñach
ABSTRACT p120-catenin is an adherens junction-associated protein that controls E-cadherin function and stability. p120-catenin also binds intracellular proteins, such as the small GTPase RhoA. In this paper, we identify the p120-catenin N-terminal regulatory domain as the docking site for RhoA. Moreover, we demonstrate that the binding of RhoA to p120-catenin is tightly controlled by the Src family-dependent phosphorylation of p120-catenin on tyrosine residues. The phosphorylation induced by Src and Fyn tyrosine kinases on p120-catenin induces opposite effects on RhoA binding. Fyn, by phosphorylating a residue located in the regulatory domain of p120-catenin (Tyr112), inhibits the interaction of this protein with RhoA. By contrast, the phosphorylation of Tyr217 and Tyr228 by Src promotes a better affinity of p120-catenin towards RhoA. In agreement with these biochemical data, results obtained in cell lines support the important role of these phosphorylation sites in the regulation of RhoA activity by p120-catenin. Taken together, these observations uncover a new regulatory mechanism acting on p120-catenin that contributes to the fine-tuned regulation of the RhoA pathways during specific signaling events.
Molecular and Cellular Biology | 2003
Susana Miravet; José Piedra; Julio Castaño; Imma Raurell; Clara Francí; Mireia Duñach; Antonio García de Herreros
ABSTRACT Plakoglobin is a protein closely related to β-catenin that links desmosomal cadherins to intermediate filaments. Plakoglobin can also substitute for β-catenin in adherens junctions, providing a connection between E-cadherin and α-catenin. Association of β-catenin with E-cadherin and α-catenin is regulated by phosphorylation of specific tyrosine residues; modification of β-catenin Tyr654 and Tyr142 decreases binding to E-cadherin and α-catenin, respectively. We show here that plakoglobin can also be phosphorylated on tyrosine residues, but unlike β-catenin, this modification is not always associated with disrupted association with junctional components. Protein tyrosine kinases present distinct specificities on β-catenin and plakoglobin, and phosphorylation of β-catenin-equivalent Tyr residues of plakoglobin affects its interaction with components of desmosomes or adherens junctions differently. For instance, Src, which mainly phosphorylates Tyr86 in β-catenin, modifies Tyr643 in plakoglobin, decreasing the interaction with E-cadherin and α-catenin and increasing the interaction with the α-catenin-equivalent protein in desmosomes, desmoplakin. The tyrosine kinase Fer, which modifies β-catenin Tyr142, lessening its association with α-catenin, phosphorylates plakoglobin Tyr549 and exerts the contrary effect: it raises the binding of plakoglobin to α-catenin. These results suggest that tyrosine kinases like Src or Fer modulate desmosomes and adherens junctions differently. Our results also indicate that phosphorylation of Tyr549 and the increased binding of plakoglobin to components of adherens junctions can contribute to the upregulation of the transcriptional activity of the β-catenin-Tcf-4 complex observed in many epithelial tumor cells.
Journal of Cell Biology | 2008
Paloma Ordóñez-Morán; María Jesús Larriba; Héctor G. Pálmer; Ruth A. Valero; Antonio Barbáchano; Mireia Duñach; Antonio García de Herreros; Carlos Villalobos; Maria T. Berciano; Miguel Lafarga; Alberto Muñoz
The active vitamin D metabolite 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) inhibits proliferation and promotes differentiation of colon cancer cells through the activation of vitamin D receptor (VDR), a transcription factor of the nuclear receptor superfamily. Additionally, 1,25(OH)2D3 has several nongenomic effects of uncertain relevance. We show that 1,25(OH)2D3 induces a transcription-independent Ca2+ influx and activation of RhoA–Rho-associated coiled kinase (ROCK). This requires VDR and is followed by activation of the p38 mitogen-activated protein kinase (p38MAPK) and mitogen- and stress-activated kinase 1 (MSK1). As shown by the use of chemical inhibitors, dominant-negative mutants and small interfering RNA, RhoA–ROCK, and p38MAPK-MSK1 activation is necessary for the induction of CDH1/E-cadherin, CYP24, and other genes and of an adhesive phenotype by 1,25(OH)2D3. RhoA–ROCK and MSK1 are also required for the inhibition of Wnt–β-catenin pathway and cell proliferation. Thus, the action of 1,25(OH)2D3 on colon carcinoma cells depends on the dual action of VDR as a transcription factor and a nongenomic activator of RhoA–ROCK and p38MAPK-MSK1.
Cancer Research | 2008
Taranjit S. Gujral; Wendy van Veelen; Douglas S. Richardson; Shirley M. Myers; Jalna Meens; Dennis S. Acton; Mireia Duñach; Bruce E. Elliott; Jo W.M. Höppener; Lois M. Mulligan
The RET receptor tyrosine kinase has essential roles in cell survival, differentiation, and proliferation. Oncogenic activation of RET causes the cancer syndrome multiple endocrine neoplasia type 2 (MEN 2) and is a frequent event in sporadic thyroid carcinomas. However, the molecular mechanisms underlying RETs potent transforming and mitogenic signals are still not clear. Here, we show that nuclear localization of beta-catenin is frequent in both thyroid tumors and their metastases from MEN 2 patients, suggesting a novel mechanism of RET-mediated function through the beta-catenin signaling pathway. We show that RET binds to, and tyrosine phosphorylates, beta-catenin and show that the interaction between RET and beta-catenin can be direct and independent of cytoplasmic kinases, such as SRC. As a result of RET-mediated tyrosine phosphorylation, beta-catenin escapes cytosolic down-regulation by the adenomatous polyposis coli/Axin/glycogen synthase kinase-3 complex and accumulates in the nucleus, where it can stimulate beta-catenin-specific transcriptional programs in a RET-dependent fashion. We show that down-regulation of beta-catenin activity decreases RET-mediated cell proliferation, colony formation, and tumor growth in nude mice. Together, our data show that a beta-catenin-RET kinase pathway is a critical contributor to the development and metastasis of human thyroid carcinoma.