Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Esther Betrán is active.

Publication


Featured researches published by Esther Betrán.


Nature Reviews Genetics | 2003

The origin of new genes: glimpses from the young and old.

Manyuan Long; Esther Betrán; Kevin R. Thornton; Wen Wang

Genome data have revealed great variation in the numbers of genes in different organisms, which indicates that there is a fundamental process of genome evolution: the origin of new genes. However, there has been little opportunity to explore how genes with new functions originate and evolve. The study of ancient genes has highlighted the antiquity and general importance of some mechanisms of gene origination, and recent observations of young genes at early stages in their evolution have unveiled unexpected molecular and evolutionary processes.


Genome Biology | 2007

Comparative genomics reveals a constant rate of origination and convergent acquisition of functional retrogenes in Drosophila

Yongsheng Bai; Claudio Casola; Cédric Feschotte; Esther Betrán

BackgroundProcessed copies of genes (retrogenes) are duplicate genes that originated through the reverse-transcription of a host transcript and insertion in the genome. This type of gene duplication, as any other, could be a source of new genes and functions. Using whole genome sequence data for 12 Drosophila species, we dated the origin of 94 retroposition events that gave rise to candidate functional genes in D. melanogaster.ResultsBased on this analysis, we infer that functional retrogenes have emerged at a fairly constant rate of 0.5 genes per million years per lineage over the last approximately 63 million years of Drosophila evolution. The number of functional retrogenes and the rate at which they are recruited in the D. melanogaster lineage are of the same order of magnitude as those estimated in the human lineage, despite the higher deletion bias in the Drosophila genome. However, unlike primates, the rate of retroposition in Drosophila seems to be fairly constant and no burst of retroposition can be inferred from our analyses. In addition, our data also support an important role for retrogenes as a source of lineage-specific male functions, in agreement with previous hypotheses. Finally, we identified three cases of functional retrogenes in D. melanogaster that have been independently retroposed and recruited in parallel as new genes in other Drosophila lineages.ConclusionTogether, these results indicate that retroposition is a persistent mechanism and a recurrent pathway for the emergence of new genes in Drosophila.


Trends in Ecology and Evolution | 2011

Intralocus sexual conflict resolved through gene duplication

Miguel Gallach; Esther Betrán

Gene duplication is mainly recognized by its primary role in the origin of new genes and functions. However, the idea that gene duplication can be a central player in resolving sexual genetic conflicts through its potential to generate sex-biased and sex-specifically expressed genes, has been almost entirely overlooked. We review recent data and theory that support gene duplication as a theoretically predicted and experimentally supported means of resolving intralocus sexual antagonism. We believe that this role is probably the consequence of sexual conflict for housekeeping genes that are required in males and females, and which are expressed in sexually dimorphic tissues (i.e. where sexually antagonistic selection is exerted). We think that these genes cannot evolve tissue-specific expression unless they duplicate.


Genetica | 2003

Origin of New Genes: Evidence from Experimental and Computational Analyses

Manyuan Long; Michael Deutsch; Wen Wang; Esther Betrán; Frédéric Brunet; Jianming Zhang

Exon shuffling is an essential molecular mechanism for the formation of new genes. Many cases of exon shuffling have been reported in vertebrate genes. These discoveries revealed the importance of exon shuffling in the origin of new genes. However, only a few cases of exon shuffling were reported from plants and invertebrates, which gave rise to the assertion that the intron-mediated recombination mechanism originated very recently. We focused on the origin of new genes by exon shuffling and retroposition. We will first summarize our experimental work, which revealed four new genes in Drosophila, plants, and humans. These genes are 106 to 108 million years old. The recency of these genes allows us to directly examine the origin and evolution of genes in detail. These observations show firstly the importance of exon shuffling and retroposition in the rapid creation of new gene structures. They also show that the resultant chimerical structures appearing as mosaic proteins or as retroposed coding structures with novel regulatory systems, often confer novel functions. Furthermore, these newly created genes appear to have been governed by positive Darwinian selection throughout their history, with rapid changes of amino acid sequence and gene structure in very short periods of evolution. We further analyzed the distribution of intron phases in three non-vertebrate species, Drosophila melanogaster, Caenorhabditis elegans, and Arabidosis thaliana, as inferred from their genome sequences. As in the case of vertebrate genes, we found that intron phases in these species are unevenly distributed with an excess of phase zero introns and a significant excess of symmetric exons. Both findings are consistent with the requirements for the molecular process of exon shuffling. Thus, these non-vertebrate genomes may have also been strongly impacted by exon shuffling in general.


Genetica | 2002

Expansion of genome coding regions by acquisition of new genes

Esther Betrán; Manyuan Long

As it is the case for non-coding regions, the coding regions of organisms can be expanded or shrunk during evolutionary processes. However, the dynamics of coding regions are expected to be more correlated with functional complexity and diversity than are the dynamics of non-coding regions. Hence, it is interesting to investigate the increase of diversity in coding regions – the origin and evolution of new genes – because this provides a new component to the genetic variation underlying the diversity of living organisms. Here, we examine what is known about the mechanisms responsible for the increase in gene number. Every mechanism affects genomes in a distinct way and to a different extent and it appears that certain organisms favor particular mechanisms. The detail of some interesting gene acquisitions reveals the extreme dynamism of genomes. Finally, we discuss what is known about the fate of new genes and conclude that many of the acquisitions are likely to have been driven by natural selection; they increase functional complexity, diversity, and/or adaptation of species. Despite this, the correlation between complexity of life and gene number is low and closely related species (with very similar life histories) can have very different number of genes. We call this phenomenon the G-value paradox.


Evolution | 1998

Antagonistic pleiotropic effect of second-chromosome inversions on body size and early life-history traits in Drosophila buzzatii

Esther Betrán; Mauro Santos; Alfredo Ruiz

A simple way to think of evolutionary trade‐offs is to suppose genetic effects of opposed direction that give rise to antagonistic pleiotropy. Maintenance of additive genetic variability for fitness related characters, in association with negative correlations between these characters, may result. In the cactophilic species Drosophila buzzatii, there is evidence that second‐chromosome polymorphic inversions affect size‐related traits. Because a trade‐off between body size and larval developmental time has been reported in Drosophila, we study here whether or not these inversions also affect larva‐adult viability and developmental time. In particular, we expect that polymorphic inversions make a statistically significant contribution to the genetic correlation between body size (as measured by thorax length) and larval developmental time. This contribution is expected to be in the direction predicted by the trade‐off, namely, those flies whose karyotypes cause them to be genetically larger should also have a longer developmental time than flies with other karyotypes. Using two different experimental approaches, a statistically significant contribution of the second‐chromosome inversions to the phenotypic variances of body size and developmental time in D. buzzatii was found. Further, these inversions make a positive contribution to the total genetic correlation between the traits, as expected by the suggested trade‐off. The data do not provide evidence as to whether the genetic correlation is due to antagonistic pleiotropic gene action or to gametic disequilibrium of linked genes that affect one or both traits. The results do suggest, however, a possible explanation for the maintenance of inversion polymorphism in this species.


Genome Biology and Evolution | 2010

Analyses of Nuclearly Encoded Mitochondrial Genes Suggest Gene Duplication as a Mechanism for Resolving Intralocus Sexually Antagonistic Conflict in Drosophila

Miguel Gallach; Chitra Chandrasekaran; Esther Betrán

Gene duplication is probably the most important mechanism for generating new gene functions. However, gene duplication has been overlooked as a potentially effective way to resolve genetic conflicts. Here, we analyze the entire set of Drosophila melanogaster nuclearly encoded mitochondrial duplicate genes and show that both RNA- and DNA-mediated mitochondrial gene duplications exhibit an unexpectedly high rate of relocation (change in location between parental and duplicated gene) as well as an extreme tendency to avoid the X chromosome. These trends are likely related to our observation that relocated genes tend to have testis-specific expression. We also infer that these trends hold across the entire Drosophila genus. Importantly, analyses of gene ontology and functional interaction networks show that there is an overrepresentation of energy production-related functions in these mitochondrial duplicates. We discuss different hypotheses to explain our results and conclude that our findings substantiate the hypothesis that gene duplication for male germline function is likely a mechanism to resolve intralocus sexually antagonistic conflicts that we propose are common in testis. In the case of nuclearly encoded mitochondrial duplicates, our hypothesis is that past sexually antagonistic conflict related to mitochondrial energy function in Drosophila was resolved by gene duplication.


International Journal of Evolutionary Biology | 2011

Gene Duplication and the Genome Distribution of Sex-Biased Genes

Miguel Gallach; Susana Domingues; Esther Betrán

In species that have two sexes, a single genome encodes two morphs, as each sex can be thought of as a distinct morph. This means that the same set of genes are differentially expressed in the different sexes. Many questions emanate from this statement. What proportion of genes contributes to sexual dimorphism? How do they contribute to sexual dimorphism? How is sex-biased expression achieved? Which sex and what tissues contribute the most to sex-biased expression? Do sex-biased genes have the same evolutionary patterns as nonbiased genes? We review the current data on sex-biased expression in species with heteromorphic sex chromosomes and comment on the most important hypotheses suggested to explain the origin, evolution, and distribution patterns of sex-biased genes. In this perspective we emphasize how gene duplication serves as an important molecular mechanism to resolve genomic clashes and genetic conflicts by generating sex-biased genes, often sex-specific genes, and contributes greatly to the underlying genetic basis of sexual dimorphism.


Cell Cycle | 2004

Sex Chromosomes and Male Functions Where Do New Genes Go

Esther Betrán; J. J. Emerson; Henrik Kaessmann; Manyuan Long

The position of a gene in the genome may have important consequences for its function. Therefore, when a new duplicate gene arises, its location may be critical in determining its fate. Our recent work in humans, mouse, and Drosophila provided a test by studying the patterns of duplication in sex chromosome evolution. We revealed a bias in the generation and recruitment of new gene copies involving the X chromosome that has been shaped largely by selection for male germline functions. The gene movement patterns we observed reflect an ongoing process as some of the new genes are very young while others were present before the divergence of humans and mouse. This suggests a continuing redistribution of male-related genes to achieve a more efficient allocation of male functions. This notion should be further tested in organisms employing other sex determination systems or in organisms differing in germline X chromosome inactivation. It is likely that the selective forces that were detected in these studies are also acting on other types of duplicate genes. As a result, future work elucidating sex chromosome differentiation by other mutational mechanisms will shed light on this important process.


PLOS ONE | 2007

Conflict between Translation Initiation and Elongation in Vertebrate Mitochondrial Genomes

Xuhua Xia; Huang Huang; Malisa Carullo; Esther Betrán; Etsuko N. Moriyama

The strand-biased mutation spectrum in vertebrate mitochondrial genomes results in an AC-rich L-strand and a GT-rich H-strand. Because the L-strand is the sense strand of 12 protein-coding genes out of the 13, the third codon position is overall strongly AC-biased. The wobble site of the anticodon of the 22 mitochondrial tRNAs is either U or G to pair with the most abundant synonymous codon, with only one exception. The wobble site of Met-tRNA is C instead of U, forming the Watson-Crick match with AUG instead of AUA, the latter being much more frequent than the former. This has been attributed to a compromise between translation initiation and elongation; i.e., AUG is not only a methionine codon, but also an initiation codon, and an anticodon matching AUG will increase the initiation rate. However, such an anticodon would impose selection against the use of AUA codons because AUA needs to be wobble-translated. According to this translation conflict hypothesis, AUA should be used relatively less frequently compared to UUA in the UUR codon family. A comprehensive analysis of mitochondrial genomes from a variety of vertebrate species revealed a general deficiency of AUA codons relative to UUA codons. In contrast, urochordate mitochondrial genomes with two tRNAMet genes with CAU and UAU anticodons exhibit increased AUA codon usage. Furthermore, six bivalve mitochondrial genomes with both of their tRNA-Met genes with a CAU anticodon have reduced AUA usage relative to three other bivalve mitochondrial genomes with one of their two tRNA-Met genes having a CAU anticodon and the other having a UAU anticodon. We conclude that the translation conflict hypothesis is empirically supported, and our results highlight the fine details of selection in shaping molecular evolution.

Collaboration


Dive into the Esther Betrán's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alfredo Ruiz

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Miguel Gallach

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yongsheng Bai

Indiana State University

View shared research outputs
Top Co-Authors

Avatar

Anna Williford

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar

Javier Río

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar

Antonio Barbadilla

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Arcadio Navarro

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge