Yongsheng Bai
Indiana State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yongsheng Bai.
Genome Biology | 2007
Yongsheng Bai; Claudio Casola; Cédric Feschotte; Esther Betrán
BackgroundProcessed copies of genes (retrogenes) are duplicate genes that originated through the reverse-transcription of a host transcript and insertion in the genome. This type of gene duplication, as any other, could be a source of new genes and functions. Using whole genome sequence data for 12 Drosophila species, we dated the origin of 94 retroposition events that gave rise to candidate functional genes in D. melanogaster.ResultsBased on this analysis, we infer that functional retrogenes have emerged at a fairly constant rate of 0.5 genes per million years per lineage over the last approximately 63 million years of Drosophila evolution. The number of functional retrogenes and the rate at which they are recruited in the D. melanogaster lineage are of the same order of magnitude as those estimated in the human lineage, despite the higher deletion bias in the Drosophila genome. However, unlike primates, the rate of retroposition in Drosophila seems to be fairly constant and no burst of retroposition can be inferred from our analyses. In addition, our data also support an important role for retrogenes as a source of lineage-specific male functions, in agreement with previous hypotheses. Finally, we identified three cases of functional retrogenes in D. melanogaster that have been independently retroposed and recruited in parallel as new genes in other Drosophila lineages.ConclusionTogether, these results indicate that retroposition is a persistent mechanism and a recurrent pathway for the emergence of new genes in Drosophila.
Genome Biology | 2014
Bo Li; Nathanael Fillmore; Yongsheng Bai; Mike Collins; James A Thomson; Ron Stewart; Colin N. Dewey
De novo RNA-Seq assembly facilitates the study of transcriptomes for species without sequenced genomes, but it is challenging to select the most accurate assembly in this context. To address this challenge, we developed a model-based score, RSEM-EVAL, for evaluating assemblies when the ground truth is unknown. We show that RSEM-EVAL correctly reflects assembly accuracy, as measured by REF-EVAL, a refined set of ground-truth-based scores that we also developed. Guided by RSEM-EVAL, we assembled the transcriptome of the regenerating axolotl limb; this assembly compares favorably to a previous assembly. A software package implementing our methods, DETONATE, is freely available at http://deweylab.biostat.wisc.edu/detonate.
eLife | 2013
Xiao Wei Chen; He Wang; Kanika Bajaj; Pengcheng Zhang; Zhuo Xian Meng; Danjun Ma; Yongsheng Bai; Hui Hui Liu; Elizabeth J. Adams; Andrea C. Baines; Genggeng Yu; Maureen A. Sartor; Bin Zhang; Zhengping Yi; Jiandie Lin; Stephen G. Young; Randy Schekman; David Ginsburg
The secretory pathway of eukaryotic cells packages cargo proteins into COPII-coated vesicles for transport from the endoplasmic reticulum (ER) to the Golgi. We now report that complete genetic deficiency for the COPII component SEC24A is compatible with normal survival and development in the mouse, despite the fundamental role of SEC24 in COPII vesicle formation and cargo recruitment. However, these animals exhibit markedly reduced plasma cholesterol, with mutations in Apoe and Ldlr epistatic to Sec24a, suggesting a receptor-mediated lipoprotein clearance mechanism. Consistent with these data, hepatic LDLR levels are up-regulated in SEC24A-deficient cells as a consequence of specific dependence of PCSK9, a negative regulator of LDLR, on SEC24A for efficient exit from the ER. Our findings also identify partial overlap in cargo selectivity between SEC24A and SEC24B, suggesting a previously unappreciated heterogeneity in the recruitment of secretory proteins to the COPII vesicles that extends to soluble as well as trans-membrane cargoes. DOI: http://dx.doi.org/10.7554/eLife.00444.001
PLOS Biology | 2015
Justin R. Hassler; Donalyn Scheuner; Shiyu Wang; Jaeseok Han; Vamsi K. Kodali; Philip Li; Julie Nguyen; Jenny S. George; Cory Davis; Shengyang P. Wu; Yongsheng Bai; Maureen A. Sartor; James D. Cavalcoli; Harmeet Malhi; Gregory Baudouin; Yaoyang Zhang; John R. Yates; Pamela Itkin-Ansari; Niels Volkmann; Randal J. Kaufman
Although glucose uniquely stimulates proinsulin biosynthesis in β cells, surprisingly little is known of the underlying mechanism(s). Here, we demonstrate that glucose activates the unfolded protein response transducer inositol-requiring enzyme 1 alpha (IRE1α) to initiate X-box-binding protein 1 (Xbp1) mRNA splicing in adult primary β cells. Using mRNA sequencing (mRNA-Seq), we show that unconventional Xbp1 mRNA splicing is required to increase and decrease the expression of several hundred mRNAs encoding functions that expand the protein secretory capacity for increased insulin production and protect from oxidative damage, respectively. At 2 wk after tamoxifen-mediated Ire1α deletion, mice develop hyperglycemia and hypoinsulinemia, due to defective β cell function that was exacerbated upon feeding and glucose stimulation. Although previous reports suggest IRE1α degrades insulin mRNAs, Ire1α deletion did not alter insulin mRNA expression either in the presence or absence of glucose stimulation. Instead, β cell failure upon Ire1α deletion was primarily due to reduced proinsulin mRNA translation primarily because of defective glucose-stimulated induction of a dozen genes required for the signal recognition particle (SRP), SRP receptors, the translocon, the signal peptidase complex, and over 100 other genes with many other intracellular functions. In contrast, Ire1α deletion in β cells increased the expression of over 300 mRNAs encoding functions that cause inflammation and oxidative stress, yet only a few of these accumulated during high glucose. Antioxidant treatment significantly reduced glucose intolerance and markers of inflammation and oxidative stress in mice with β cell-specific Ire1α deletion. The results demonstrate that glucose activates IRE1α-mediated Xbp1 splicing to expand the secretory capacity of the β cell for increased proinsulin synthesis and to limit oxidative stress that leads to β cell failure.
Journal of animal science and biotechnology | 2012
Yongsheng Bai; Maureen A. Sartor; James D. Cavalcoli
Only in recent years, the draft sequences for several agricultural animals have been assembled. Assembling an individual animals entire genome sequence or specific region(s) of interest is increasingly important for agricultural researchers to perform genetic comparisons between animals with different performance. We review the current status for several sequenced agricultural species and suggest that next generation sequencing (NGS) technology with decreased sequencing cost and increased speed of sequencing can benefit agricultural researchers. By taking advantage of advanced NGS technologies, genes and chromosomal regions that are more labile to the influence of environmental factors could be pinpointed. A more long term goal would be addressing the question of how animals respond at the molecular and cellular levels to different environmental models (e.g. nutrition). Upon revealing important genes and gene-environment interactions, the rate of genetic improvement can also be accelerated. It is clear that NGS technologies will be able to assist animal scientists to efficiently raise animals and to better prevent infectious diseases so that overall costs of animal production can be decreased.
Journal of Medical Genetics | 2012
Jirair K. Bedoyan; Valerie M. Schaibley; Weiping Peng; Yongsheng Bai; Kajari Mondal; Amol Carl Shetty; Mark A. Durham; Joseph A. Micucci; Arti Dhiraaj; Jennifer M. Skidmore; Julie B Kaplan; Cindy Skinner; Charles E. Schwartz; Anthony Antonellis; Michael E. Zwick; James D. Cavalcoli; Jun Li; Donna M. Martin
Background and aim Martin–Probst syndrome (MPS) is a rare X-linked disorder characterised by deafness, cognitive impairment, short stature and distinct craniofacial dysmorphisms, among other features. The authors sought to identify the causative mutation for MPS. Methods and results Massively parallel sequencing in two affected, related male subjects with MPS identified a RAB40AL (also called RLGP) missense mutation (chrX:102,079,078-102,079,079AC→GA p.D59G; hg18). RAB40AL encodes a small Ras-like GTPase protein with one suppressor of cytokine signalling box. The p.D59G variant is located in a highly conserved region of the GTPase domain between β-2 and β-3 strands. Using RT-PCR, the authors show that RAB40AL is expressed in human fetal and adult brain and kidney, and adult lung, heart, liver and skeletal muscle. RAB40AL appears to be a primate innovation, with no orthologues found in mouse, Xenopus or zebrafish. Western analysis and fluorescence microscopy of GFP-tagged RAB40AL constructs from transiently transfected COS7 cells show that the D59G missense change renders RAB40AL unstable and disrupts its cytoplasmic localisation. Conclusions This is the first study to show that mutation of RAB40AL is associated with a human disorder. Identification of RAB40AL as the gene mutated in MPS allows for further investigations into the molecular mechanism(s) of RAB40AL and its roles in diverse processes such as cognition, hearing and skeletal development.
PLOS ONE | 2014
Yongsheng Bai; Justin Hassler; Ahdad Ziyar; Philip Kam-To Li; Zachary Wright; Rajasree Menon; Gilbert S. Omenn; James D. Cavalcoli; Randal J. Kaufman; Maureen A. Sartor
Setting During endoplasmic reticulum (ER) stress, the endoribonuclease (RNase) Ire1α initiates removal of a 26 nt region from the mRNA encoding the transcription factor Xbp1 via an unconventional mechanism (atypically within the cytosol). This causes an open reading frame-shift that leads to altered transcriptional regulation of numerous downstream genes in response to ER stress as part of the unfolded protein response (UPR). Strikingly, other examples of targeted, unconventional splicing of short mRNA regions have yet to be reported. Objective Our goal was to develop an approach to identify non-canonical, possibly very short, splicing regions using RNA-Seq data and apply it to ER stress-induced Ire1α heterozygous and knockout mouse embryonic fibroblast (MEF) cell lines to identify additional Ire1α targets. Results We developed a bioinformatics approach called the Read-Split-Walk (RSW) pipeline, and evaluated it using two Ire1α heterozygous and two Ire1α-null samples. The 26 nt non-canonical splice site in Xbp1 was detected as the top hit by our RSW pipeline in heterozygous samples but not in the negative control Ire1α knockout samples. We compared the Xbp1 results from our approach with results using the alignment program BWA, Bowtie2, STAR, Exonerate and the Unix “grep” command. We then applied our RSW pipeline to RNA-Seq data from the SKBR3 human breast cancer cell line. RSW reported a large number of non-canonical spliced regions for 108 genes in chromosome 17, which were identified by an independent study. Conclusions We conclude that our RSW pipeline is a practical approach for identifying non-canonical splice junction sites on a genome-wide level. We demonstrate that our pipeline can detect novel splice sites in RNA-Seq data generated under similar conditions for multiple species, in our case mouse and human.
Oncotarget | 2017
Germana Rappa; Mark F. Santos; Toni M. Green; Jana Karbanová; Justin Hassler; Yongsheng Bai; Sanford H. Barsky; Denis Corbeil; Aurelio Lorico
Extracellular membrane vesicles (EVs) function as vehicles of intercellular communication, but how the biomaterials they carry reach the target site in recipient cells is an open question. We report that subdomains of Rab7+ late endosomes and nuclear envelope invaginations come together to create a sub-nuclear compartment, where biomaterials associated with CD9+ EVs are delivered. EV-derived biomaterials were also found in the nuclei of host cells. The inhibition of nuclear import and export pathways abrogated the nuclear localization of EV-derived biomaterials or led to their accumulation therein, respectively, suggesting that their translocation is dependent on nuclear pores. Nuclear envelope invagination-associated late endosomes were observed in ex vivo biopsies in both breast carcinoma and associated stromal cells. The transcriptome of stromal cells exposed to cancer cell-derived CD9+ EVs revealed that the regulation of eleven genes, notably those involved in inflammation, relies on the nuclear translocation of EV-derived biomaterials. Our findings uncover a new cellular pathway used by EVs to reach nuclear compartment.
PLOS ONE | 2016
Xiao-yang Ji; Jian-xun Wang; Bin Liu; Zhuqing Zheng; Shao-yin Fu; Getinet Mekuriaw Tarekegn; Xue Bai; Yongsheng Bai; Heng Li; Wenguang Zhang
Background The fleece of cashmere goats contains two distinct populations of fibers, a short and fine non-medullated insulating cashmere fiber and a long and coarse medullated guard hair. The former is produced by secondary follicles (SFs) and the later by primary follicles (PFs). Evidence suggests that the induction of PFs and SFs may require different signaling pathways. The regulation of BMP2/4 signaling by noggin and Edar signaling via Downless genes are essential for the induction of SFs and PFs, respectively. However, these differently expressed genes of the signaling pathway cannot directly distinguish between the PFs and SFs. Results In this study, we selected RNA samples from 11 PFs and 7 SFs that included 145,525 exons. The pathway analysis of 4512 differentially expressed exons revealed that the most statistically significant metabolic pathway was related to the ubiquitin–mediated proteolysis pathway (UMPP) (P<3.32x 10−7). In addition, the 51 exons of the UMPP that were differentially expressed between the different types of hair follicle (HFs) were compared by cluster analysis. This resulted in the PFs and SFs being divided into two classes. The expression level of two selected exons was analyzed by qRT-PCR, and the results indicated that the expression patterns were consistent with the deep sequencing results obtained by RNA-Seq. Conclusions Based on the comparative transcriptome analysis of 18 HFs from cashmere goats, a large number of differentially expressed exons were identified using a high-throughput sequencing approach. This study suggests that UMPP activation is a prominent signaling pathway for distinguishing the PFs and SFs of cashmere goats. It is also a meaningful contribution to the theoretical basis of the biological study of the HFs of cashmere goats and other mammals.
Connective Tissue Research | 2014
James P. Simmer; Amelia S. Richardson; Shih Kai Wang; Bryan M. Reid; Yongsheng Bai; Yuanyuan Hu; Jan C.-C. Hu
Abstract The purpose of this study was to identify the major molecular components in the secretory and maturation stages of amelogenesis through transcriptome analyses. Ameloblasts (40 sections per age group) were laser micro-dissected from Day 5 (secretory stage) and Days 11–12 (maturation stage) first molars. PolyA+ RNA was isolated from the lysed cells, converted to cDNA, and amplified to generate a cDNA library. DNA sequences were obtained using next generation sequencing and analyzed to identify genes whose expression had increased or decreased at least 1.5-fold in maturation stage relative to secretory stage ameloblasts. Among the 9198 genes that surpassed the quality threshold, 373 showed higher expression in secretory stage, while 614 genes increased in maturation stage ameloblasts. The results were cross-checked against a previously published transcriptome generated from tissues overlying secretory and maturation stage mouse incisor enamel and 34 increasing and 26 decreasing expressers common to the two studies were identified. Expression of F2r, which encodes protease activated receptor 1 (PAR1) that showed 10-fold higher expression during the secretory stage in our transcriptome analysis, was characterized in mouse incisors by immunohistochemistry. PAR1 was detected in secretory, but not maturation stage ameloblasts. We conclude that transcriptome analyses are a good starting point for identifying genes/proteins that are critical for proper dental enamel formation and that PAR1 is specifically expressed by secretory stage ameloblasts.