Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Esther Korpershoek is active.

Publication


Featured researches published by Esther Korpershoek.


Lancet Oncology | 2009

An immunohistochemical procedure to detect patients with paraganglioma and phaeochromocytoma with germline SDHB, SDHC, or SDHD gene mutations: a retrospective and prospective analysis.

Francien H. van Nederveen; José Gaal; Judith Favier; Esther Korpershoek; Rogier A. Oldenburg; Elly M C A de Bruyn; Hein Sleddens; Pieter Derkx; Julie Rivière; Hilde Dannenberg; Bart-Jeroen Petri; Paul Komminoth; Karel Pacak; Wim C. J. Hop; Patrick J. Pollard; Massimo Mannelli; Jean-Pierre Bayley; Aurel Perren; Stephan Niemann; A.A.J. Verhofstad; Adriaan P. de Bruïne; Eamonn R. Maher; Frédérique Tissier; Tchao Meatchi; Cécile Badoual; Jérôme Bertherat; Laurence Amar; Despoina Alataki; Eric Van Marck; Francesco Ferraù

BACKGROUND Phaeochromocytomas and paragangliomas are neuro-endocrine tumours that occur sporadically and in several hereditary tumour syndromes, including the phaeochromocytoma-paraganglioma syndrome. This syndrome is caused by germline mutations in succinate dehydrogenase B (SDHB), C (SDHC), or D (SDHD) genes. Clinically, the phaeochromocytoma-paraganglioma syndrome is often unrecognised, although 10-30% of apparently sporadic phaeochromocytomas and paragangliomas harbour germline SDH-gene mutations. Despite these figures, the screening of phaeochromocytomas and paragangliomas for mutations in the SDH genes to detect phaeochromocytoma-paraganglioma syndrome is rarely done because of time and financial constraints. We investigated whether SDHB immunohistochemistry could effectively discriminate between SDH-related and non-SDH-related phaeochromocytomas and paragangliomas in large retrospective and prospective tumour series. METHODS Immunohistochemistry for SDHB was done on 220 tumours. Two retrospective series of 175 phaeochromocytomas and paragangliomas with known germline mutation status for phaeochromocytoma-susceptibility or paraganglioma-susceptibility genes were investigated. Additionally, a prospective series of 45 phaeochromocytomas and paragangliomas was investigated for SDHB immunostaining followed by SDHB, SDHC, and SDHD mutation testing. FINDINGS SDHB protein expression was absent in all 102 phaeochromocytomas and paragangliomas with an SDHB, SDHC, or SDHD mutation, but was present in all 65 paraganglionic tumours related to multiple endocrine neoplasia type 2, von Hippel-Lindau disease, and neurofibromatosis type 1. 47 (89%) of the 53 phaeochromocytomas and paragangliomas with no syndromic germline mutation showed SDHB expression. The sensitivity and specificity of the SDHB immunohistochemistry to detect the presence of an SDH mutation in the prospective series were 100% (95% CI 87-100) and 84% (60-97), respectively. INTERPRETATION Phaeochromocytoma-paraganglioma syndrome can be diagnosed reliably by an immunohistochemical procedure. SDHB, SDHC, and SDHD germline mutation testing is indicated only in patients with SDHB-negative tumours. SDHB immunohistochemistry on phaeochromocytomas and paragangliomas could improve the diagnosis of phaeochromocytoma-paraganglioma syndrome. FUNDING The Netherlands Organisation for Scientific Research, Dutch Cancer Society, Vanderes Foundation, Association pour la Recherche contre le Cancer, Institut National de la Santé et de la Recherche Médicale, and a PHRC grant COMETE 3 for the COMETE network.


Lancet Oncology | 2010

SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma

Jean-Pierre Bayley; H.P.M. Kunst; Alberto Cascón; M. L. Sampietro; José Gaal; Esther Korpershoek; Adolfo Hinojar-Gutierrez; Henri Timmers; Lies H. Hoefsloot; Mario Hermsen; Carlos Suárez; A. Karim Hussain; Annette H. J. T. Vriends; Frederik J. Hes; Jeroen C. Jansen; Carli M. J. Tops; Eleonora P. M. Corssmit; Peter de Knijff; Jacques W. M. Lenders; C.W.R.J. Cremers; Peter Devilee; Winand N. M. Dinjens; Ronald R. de Krijger; Mercedes Robledo

BACKGROUND Paragangliomas and phaeochromocytomas are neuroendocrine tumours associated frequently with germline mutations of SDHD, SDHC, and SDHB. Previous studies have shown the imprinted SDHAF2 gene to be mutated in a large Dutch kindred with paragangliomas. We aimed to identify SDHAF2 mutation carriers, assess the clinical genetic significance of SDHAF2, and describe the associated clinical phenotype. METHODS We undertook a multicentre study in Spain and The Netherlands in 443 apparently sporadic patients with paragangliomas and phaeochromocytomas who did not have mutations in SDHD, SDHC, or SDHB. We analysed DNA of 315 patients for germline mutations of SDHAF2; a subset (n=200) was investigated for gross gene deletions. DNA from a group of 128 tumours was studied for somatic mutations. We also examined a Spanish family with head and neck paragangliomas with a young age of onset for the presence of SDHAF2 mutations, undertook haplotype analysis in this kindred, and assessed their clinical phenotype. FINDINGS We did not identify any germline or somatic mutations of SDHAF2, and no gross gene deletions were noted in the subset of apparently sporadic patients analysed. Investigation of the Spanish family identified a pathogenic germline DNA mutation of SDHAF2, 232G-->A (Gly78Arg), identical to the Dutch kindred. INTERPRETATION SDHAF2 mutations do not have an important role in phaeochromocytoma and are rare in head and neck paraganglioma. Identification of a second family with the Gly78Arg mutation suggests that this is a crucial residue for the function of SDHAF2. We conclude that SDHAF2 mutation analysis is justified in very young patients with isolated head and neck paraganglioma without mutations in SDHD, SDHC, or SDHB, and in individuals with familial antecedents who are negative for mutations in all other risk genes. FUNDING Dutch Cancer Society, European Union 6th Framework Program, Fondo Investigaciones Sanitarias, Fundación Mutua Madrileña, and Red Temática de Investigación Cooperativa en Cáncer.


Clinical Cancer Research | 2012

MAX mutations cause hereditary and sporadic pheochromocytoma and paraganglioma.

Nelly Burnichon; Alberto Cascón; Francesca Schiavi; NicolePaes Morales; Iñaki Comino-Méndez; Nasséra Abermil; Lucía Inglada-Pérez; Aguirre A. de Cubas; Laurence Amar; Marta Barontini; Sandra Bernaldo De Quiroś; Jérôome Bertherat; Yves Jean Bignon; Marinus J. Blok; Sara Bobisse; Salud Borrego; Maurizio Castellano; Philippe Chanson; María Dolores Chiara; Eleonora P. M. Corssmit; Mara Giacchè; Ronald R. de Krijger; Tonino Ercolino; Xavier Girerd; Encarna B. Gomez-Garcia; Álvaro Gómez-Graña; Isabelle Guilhem; Frederik J. Hes; Emiliano Honrado; Esther Korpershoek

Purpose: Pheochromocytomas (PCC) and paragangliomas (PGL) are genetically heterogeneous neural crest–derived neoplasms. Recently we identified germline mutations in a new tumor suppressor susceptibility gene, MAX (MYC-associated factor X), which predisposes carriers to PCC. How MAX mutations contribute to PCC/PGL and associated phenotypes remain unclear. This study aimed to examine the prevalence and associated phenotypic features of germline and somatic MAX mutations in PCC/PGL. Design: We sequenced MAX in 1,694 patients with PCC or PGL (without mutations in other major susceptibility genes) from 17 independent referral centers. We screened for large deletions/duplications in 1,535 patients using a multiplex PCR-based method. Somatic mutations were searched for in tumors from an additional 245 patients. The frequency and type of MAX mutation was assessed overall and by clinical characteristics. Results: Sixteen MAX pathogenic mutations were identified in 23 index patients. All had adrenal tumors, including 13 bilateral or multiple PCCs within the same gland (P < 0.001), 15.8% developed additional tumors at thoracoabdominal sites, and 37% had familial antecedents. Age at diagnosis was lower (P = 0.001) in MAX mutation carriers compared with nonmutated cases. Two patients (10.5%) developed metastatic disease. A mutation affecting MAX was found in five tumors, four of them confirmed as somatic (1.65%). MAX tumors were characterized by substantial increases in normetanephrine, associated with normal or minor increases in metanephrine. Conclusions: Germline mutations in MAX are responsible for 1.12% of PCC/PGL in patients without evidence of other known mutations and should be considered in the genetic work-up of these patients. Clin Cancer Res; 18(10); 2828–37. ©2012 AACR.


The Journal of Clinical Endocrinology and Metabolism | 2011

SDHA Immunohistochemistry Detects Germline SDHA Gene Mutations in Apparently Sporadic Paragangliomas and Pheochromocytomas

Esther Korpershoek; Judith Favier; José Gaal; Nelly Burnichon; Bram van Gessel; Lindsey Oudijk; Cécile Badoual; Noémie Gadessaud; Annabelle Venisse; Jean-Pierre Bayley; Marieke F. van Dooren; Wouter W. de Herder; Frédérique Tissier; Pierre-François Plouin; Francien H. van Nederveen; Winand N. M. Dinjens; Anne-Paule Gimenez-Roqueplo; Ronald R. de Krijger

CONTEXT Pheochromocytoma-paraganglioma syndrome is caused by mutations in SDHB, SDHC, and SDHD, encoding subunits of succinate dehydrogenase (SDH), and in SDHAF2, required for flavination of SDHA. A recent report described a patient with an abdominal paraganglioma, immunohistochemically negative for SDHA, and identified a causal germline mutation in SDHA. OBJECTIVE In this study, we evaluated the significance of SDHA immunohistochemistry in the identification of new patients with SDHA mutations. SETTING This study was performed in the Erasmus Medical Center in Rotterdam (The Netherlands) and the Université Paris Descartes in Paris (France). METHODS We investigated 316 pheochromocytomas and paragangliomas for SDHA expression. Sequence analysis of SDHA was performed on all tumors that were immunohistochemically negative for SDHA and on a subset of tumors immunohistochemically positive for SDHA. RESULTS Six tumors were immunohistochemically negative for SDHA. Four tumors from Dutch patients showed a germline c.91C → T SDHA gene mutation (p.Arg31X). Another tumor (from France) carried a germline SDHA missense mutation c.1753C → T (p.Arg585Trp). Loss of the wild-type SDHA allele was confirmed by loss of heterozygosity analysis. Sequence analysis of 35 SDHA immunohistochemically positive tumors did not reveal additional SDHA mutations. CONCLUSIONS Our results demonstrate that SDHA immunohistochemistry on paraffin-embedded tumors can reveal the presence of SDHA germline mutations and allowed the identification of SDHA-related tumors in at least 3% of patients affected by apparently sporadic (para)sympathetic paragangliomas and pheochromocytomas.


Modern Pathology | 2011

SDHB immunohistochemistry: a useful tool in the diagnosis of Carney–Stratakis and Carney triad gastrointestinal stromal tumors

José Gaal; Constantine A. Stratakis; J. Aidan Carney; Evan R. Ball; Esther Korpershoek; Maya Lodish; Isaac Levy; Paraskevi Xekouki; Francien H. van Nederveen; Michael A. den Bakker; Maureen J. O'Sullivan; Winand N. M. Dinjens; Ronald R. de Krijger

Mutations in the tumor suppressor genes SDHB, SDHC, and SDHD (or collectively SDHx) cause the inherited paraganglioma syndromes, characterized by pheochromocytomas and paragangliomas. However, other tumors have been associated with SDHx mutations, such as gastrointestinal stromal tumors (GISTs) specifically in the context of Carney–Stratakis syndrome. Previously, we have shown that SDHB immunohistochemistry is a reliable technique for the identification of pheochromocytomas and paragangliomas caused by SDHx mutations. We hypothesized that GISTs in patients with SDHx mutations would be negative immunohistochemically for SDHB as well. Four GISTs from patients with Carney–Stratakis syndrome and six from patients with Carney triad were investigated by SDHB immunohistochemistry. Five GISTs with KIT or PDGFRA gene mutations were used as controls. In addition, SDHB immunohistochemistry was performed on 42 apparently sporadic GISTs. In cases in which the SDHB immunohistochemistry was negative, mutational analysis of SDHB, SDHC, and SDHD was performed. All GISTs from patients with Carney–Stratakis syndrome and Carney triad were negative for SDHB immunohistochemically. In one patient with Carney–Stratakis syndrome, a germline SDHB mutation was found (p.Ser92Thr). The five GISTs with a KIT or PDGFRA gene mutation were all immunohistochemically positive for SDHB. Of the 42 sporadic tumors, one GIST was SDHB-negative. Mutational analysis of this tumor did not reveal an SDHx mutation. All SDHB-negative GISTs were located in the stomach, had an epithelioid morphology, and had no KIT or PDGFRA mutations. We show that Carney–Stratakis syndrome- and Carney-triad-associated GISTs are negative by immunohistochemistry for SDHB in contrast to KIT- or PDGFRA-mutated GISTs and a majority of sporadic GISTs. We suggest that GISTs of epithelioid cell morphology are tested for SDHB immunohistochemically. In case of negative SDHB staining in GISTs, Carney–Stratakis syndrome or Carney triad should be considered and appropriate clinical surveillance should be instituted.


The Journal of Clinical Endocrinology and Metabolism | 2010

Isocitrate dehydrogenase mutations are rare in pheochromocytomas and paragangliomas.

José Gaal; Nelly Burnichon; Esther Korpershoek; Isabelle Roncelin; Jérôme Bertherat; Pierre-François Plouin; Ronald R. de Krijger; Anne-Paule Gimenez-Roqueplo; Winand N. M. Dinjens

CONTEXT Paragangliomas and pheochromocytomas are neuroendocrine tumors that occur sporadically and in the context of inherited tumor syndromes including hereditary paraganglioma-pheochromocytoma syndrome and von Hippel-Lindau disease (VHL). The paraganglioma-pheochromocytoma syndrome is caused by germline-inactivating mutations in the mitochondrial succinate dehydrogenase (SDH) genes SDHB, SDHC, SDHD, or SDHAF2, and VHL is the result of inactivating VHL gene mutations. In SDH- and VHL-related paraganglioma and pheochromocytoma, hypoxia-inducible factor (HIF) stabilization has been described as the causal oncogenic event. Recently, HIF activation has also been found in glioblastoma multiforme, as the result of somatic mutational inactivation of the isocitrate dehydrogenase (IDH) type 1 or type 2 enzymes. These findings suggest that inactivating IDH1 and IDH2 mutations might also play a role in paraganglioma and pheochromocytoma tumorigenesis, especially in non-SDH- or non-VHL-related tumors. DESIGN We investigated 365 pheochromocytomas and paragangliomas, including 269 sporadic tumors without SDH or VHL gene mutations, for mutations in IDH1 and IDH2. Only codons 132 and 172 were screened because these are the ones exclusively involved. RESULTS In one of 131 paragangliomas, a somatic heterozygous IDH1 p.Arg132Cys mutation was detected in a sporadic carotid paraganglioma diagnosed in a 61-yr-old woman. No mutations were found in 234 pheochromocytomas. CONCLUSION IDH mutations are very rare in paragangliomas and pheochromocytomas and do not appear to play an important role in oncogenic HIF activation known to be present in these tumors.


European Journal of Endocrinology | 2014

Non-pheochromocytoma (PCC)/paraganglioma (PGL) tumors in patients with succinate dehydrogenase-related PCC-PGL syndromes: A clinicopathological and molecular analysis

Thomas G. Papathomas; José Gaal; Eleonora P. M. Corssmit; Lindsey Oudijk; Esther Korpershoek; Ketil Heimdal; Jean-Pierre Bayley; Hans Morreau; Marieke F. van Dooren; Konstantinos Papaspyrou; T. Schreiner; Torsten Hansen; Per Arne Andresen; D F Restuccia; Ingrid van Kessel; Geert J.L.H. van Leenders; Johan M. Kros; Leendert Looijenga; Leo J. Hofland; Wolf J. Mann; Francien H. van Nederveen; Ozgur Mete; Sylvia L. Asa; Ronald R. de Krijger; Winand N. M. Dinjens

OBJECTIVE Although the succinate dehydrogenase (SDH)-related tumor spectrum has been recently expanded, there are only rare reports of non-pheochromocytoma/paraganglioma tumors in SDHx-mutated patients. Therefore, questions still remain unresolved concerning the aforementioned tumors with regard to their pathogenesis, clinicopathological phenotype, and even causal relatedness to SDHx mutations. Absence of SDHB expression in tumors derived from tissues susceptible to SDH deficiency is not fully elucidated. DESIGN AND METHODS Three unrelated SDHD patients, two with pituitary adenoma (PA) and one with papillary thyroid carcinoma (PTC), and three SDHB patients affected by renal cell carcinomas (RCCs) were identified from four European centers. SDHA/SDHB immunohistochemistry (IHC), SDHx mutation analysis, and loss of heterozygosity analysis of the involved SDHx gene were performed on all tumors. A cohort of 348 tumors of unknown SDHx mutational status, including renal tumors, PTCs, PAs, neuroblastic tumors, seminomas, and adenomatoid tumors, was investigated by SDHB IHC. RESULTS Of the six index patients, all RCCs and one PA displayed SDHB immunonegativity in contrast to the other PA and PTC. All immunonegative tumors demonstrated loss of the WT allele, indicating bi-allelic inactivation of the germline mutated gene. Of 348 tumors, one clear cell RCC exhibited partial loss of SDHB expression. CONCLUSIONS These findings strengthen the etiological association of SDHx genes with pituitary neoplasia and provide evidence against a link between PTC and SDHx mutations. Somatic deletions seem to constitute the second hit in SDHB-related renal neoplasia, while SDHx alterations do not appear to be primary drivers in sporadic tumorigenesis from tissues affected by SDH deficiency.


Modern Pathology | 2013

SDHA mutations in adult and pediatric wild-type gastrointestinal stromal tumors

Lindsey Oudijk; José Gaal; Esther Korpershoek; Francien H. van Nederveen; Lorna Kelly; Gaia Schiavon; Jaap Verweij; Ron H.J. Mathijssen; Michael A. den Bakker; Rogier A. Oldenburg; Rosa L E van Loon; Maureen J. O'Sullivan; Ronald R. de Krijger; Winand N. M. Dinjens

Most gastrointestinal stromal tumors (GISTs) harbor oncogenic mutations in KIT or platelet-derived growth factor receptor-α. However, a small subset of GISTs lacks such mutations and is termed ‘wild-type GISTs’. Germline mutation in any of the subunits of succinate dehydrogenase (SDH) predisposes individuals to hereditary paragangliomas and pheochromocytomas. However, germline mutations of the genes encoding SDH subunits A, B, C or D (SDHA, SDHB, SDHC or SDHD; collectively SDHx) are also identified in GISTs. SDHA and SDHB immunohistochemistry are reliable techniques to identify pheochromocytomas and paragangliomas with mutations in SDHA, SDHB, SDHC and SDHD. In this study, we investigated if SDHA immunohistochemistry could also identify SDHA-mutated GISTs. Twenty-four adult wild-type GISTs and nine pediatric/adolescent wild-type GISTs were analyzed with SDHB, and where this was negative, then with SDHA immunohistochemistry. If SDHA immunohistochemistry was negative, sequencing analysis of the entire SDHA coding sequence was performed. All nine pediatric/adolescent GISTs and seven adult wild-type GISTs were negative for SDHB immunohistochemistry. One pediatric GIST and three SDHB-immunonegative adult wild-type GISTs were negative for SDHA immunohistochemistry. In all four SDHA-negative GISTs, a germline SDHA c.91C>T transition was found leading to a nonsense p.Arg31X mutation. Our results demonstrate that SDHA immunohistochemistry on GISTs can identify the presence of an SDHA germline mutation. Identifying GISTs with deficient SDH activity warrants additional genetic testing, evaluation and follow-up for inherited disorders and paragangliomas.


Modern Pathology | 2015

SDHB/SDHA immunohistochemistry in pheochromocytomas and paragangliomas: A multicenter interobserver variation analysis using virtual microscopy: A Multinational Study of the European Network for the Study of Adrenal Tumors (ENS@T)

Thomas G. Papathomas; Lindsey Oudijk; Alexandre Persu; Anthony J. Gill; Francien H. van Nederveen; Arthur S. Tischler; Frédérique Tissier; Marco Volante; Xavier Matias-Guiu; Marcel Smid; Judith Favier; Elena Rapizzi; Rosella Libé; Maria Currás-Freixes; Selda Aydin; Thanh V. Huynh; Urs Lichtenauer; Anouk van Berkel; Letizia Canu; Rita Domingues; Roderick J. Clifton-Bligh; Magdalena Bialas; Miikka Vikkula; Gustavo Baretton; Mauro Papotti; Gabriella Nesi; Cécile Badoual; Karel Pacak; Graeme Eisenhofer; Henri Timmers

Despite the established role of SDHB/SDHA immunohistochemistry as a valuable tool to identify patients at risk for familial succinate dehydrogenase-related pheochromocytoma/paraganglioma syndromes, the reproducibility of the assessment methods has not as yet been determined. The aim of this study was to investigate interobserver variability among seven expert endocrine pathologists using a web-based virtual microscopy approach in a large multicenter pheochromocytoma/paraganglioma cohort (n=351): (1) 73 SDH mutated, (2) 105 non-SDH mutated, (3) 128 samples without identified SDH-x mutations, and (4) 45 with incomplete SDH molecular genetic analysis. Substantial agreement among all the reviewers was observed either with a two-tiered classification (SDHB κ=0.7338; SDHA κ=0.6707) or a three-tiered classification approach (SDHB κ=0.6543; SDHA κ=0.7516). Consensus was achieved in 315 cases (89.74%) for SDHB immunohistochemistry and in 348 cases (99.15%) for SDHA immunohistochemistry. Among the concordant cases, 62 of 69 (~90%) SDHB-/C-/D-/AF2-mutated cases displayed SDHB immunonegativity and SDHA immunopositivity, 3 of 4 (75%) with SDHA mutations showed loss of SDHA/SDHB protein expression, whereas 98 of 105 (93%) non-SDH-x-mutated counterparts demonstrated retention of SDHA/SDHB protein expression. Two SDHD-mutated extra-adrenal paragangliomas were scored as SDHB immunopositive, whereas 9 of 128 (7%) tumors without identified SDH-x mutations, 6 of 37 (~16%) VHL-mutated, as well as 1 of 21 (~5%) NF1-mutated tumors were evaluated as SDHB immunonegative. Although 14 out of those 16 SDHB-immunonegative cases were nonmetastatic, an overall significant correlation between SDHB immunonegativity and malignancy was observed (P=0.00019). We conclude that SDHB/SDHA immunohistochemistry is a reliable tool to identify patients with SDH-x mutations with an additional value in the assessment of genetic variants of unknown significance. If SDH molecular genetic analysis fails to detect a mutation in SDHB-immunonegative tumor, SDHC promoter methylation and/or VHL/NF1 testing with the use of targeted next-generation sequencing is advisable.


Journal of Medical Genetics | 2015

Recommendations for somatic and germline genetic testing of single pheochromocytoma and paraganglioma based on findings from a series of 329 patients

Maria Currás-Freixes; Lucía Inglada-Pérez; Veronika Mancikova; Cristina Montero-Conde; Rocío Letón; Iñaki Comino-Méndez; María Apellániz-Ruiz; Lara Sánchez-Barroso; Miguel Aguirre Sánchez-Covisa; Victoria Alcázar; Javier Aller; Cristina Álvarez-Escolá; Víctor M Andía-Melero; Sharona Azriel-Mira; María Calatayud-Gutiérrez; José A. Díaz; Alberto Díez-Hernández; Cristina Lamas-Oliveira; Mónica Marazuela; Xavier Matias-Guiu; Amparo Meoro-Avilés; Ana Patiño-García; Susana Pedrinaci; Garcilaso Riesco-Eizaguirre; Constantino Sábado-Álvarez; Raquel Sáez-Villaverde; Amaya Sainz de los Terreros; Óscar Sanz Guadarrama; Julia Sastre-Marcos; Bartolomé Scolá-Yurrita

Background Nowadays, 65–80% of pheochromocytoma and paraganglioma (PPGL) cases are explained by germline or somatic mutations in one of 22 genes. Several genetic testing algorithms have been proposed, but they usually exclude sporadic-PPGLs (S-PPGLs) and none include somatic testing. We aimed to genetically characterise S-PPGL cases and propose an evidence-based algorithm for genetic testing, prioritising DNA source. Methods The study included 329 probands fitting three criteria: single PPGL, no syndromic and no PPGL family history. Germline DNA was tested for point mutations in RET and for both point mutation and gross deletions in VHL, the SDH genes, TMEM127, MAX and FH. 99 tumours from patients negative for germline screening were available and tested for RET, VHL, HRAS, EPAS1, MAX and SDHB. Results Germline mutations were found in 46 (14.0%) patients, being more prevalent in paragangliomas (PGLs) (28.7%) than in pheochromocytomas (PCCs) (4.5%) (p=6.62×10−10). Somatic mutations were found in 43% of those tested, being more prevalent in PCCs (48.5%) than in PGLs (32.3%) (p=0.13). A quarter of S-PPGLs had a somatic mutation, regardless of age at presentation. Head and neck PGLs (HN-PGLs) and thoracic-PGLs (T-PGLs) more commonly had germline mutations (p=2.0×10−4 and p=0.027, respectively). Five of the 29 metastatic cases harboured a somatic mutation, one in HRAS. Conclusions We recommend prioritising testing for germline mutations in patients with HN-PGLs and T-PGLs, and for somatic mutations in those with PCC. Biochemical secretion and SDHB-immunohistochemistry should guide genetic screening in abdominal-PGLs. Paediatric and metastatic cases should not be excluded from somatic screening.

Collaboration


Dive into the Esther Korpershoek's collaboration.

Top Co-Authors

Avatar

Ronald R. de Krijger

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Winand N. M. Dinjens

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lindsey Oudijk

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Thomas G. Papathomas

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José Gaal

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Mercedes Robledo

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Jean-Pierre Bayley

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

R.R. de Krijger

Erasmus University Rotterdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge