Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Esther Moreno is active.

Publication


Featured researches published by Esther Moreno.


Archiv Der Pharmazie | 2010

Synthesis and in vitro anticancer activities of some selenadiazole derivatives.

Daniel Plano; Esther Moreno; María Font; Ignacio Encío; Juan Antonio Palop; Carmen Sanmartín

A novel series of fourteen substituted selenadiazoles has been synthesized and the compounds tested for their in vitro antiproliferative and cytotoxic activities. The tests were carried out against leukemia (CCRF‐CEM), colon (HT‐29), lung (HTB‐54), and breast (MCF‐7) cancer cells. In order to assess the selectivity of the compounds under investigation the assays were also carried out on two non‐tumoral lines – one mammary (184B5) and one bronchial epithelium (BEAS‐2B) cell line. Assay‐based antiproliferative activity studies revealed that seven derivatives (2a, 2c, 2e, 2f, 2g, 3a, and 3b) exhibited good activity against MCF‐7 cells: for instance, 2c and 2f inhibited cell growth with nanomolar GI50 values. Compound 2f had a better antitumoral profile than vinorelbine and paclitaxel, two drugs that are used as first‐line treatments in advanced, recurrent, and/or metastatic cancer. In the other cell lines the compounds showed moderate activity or were inactive – with the exception of 2a, which was also found to have antiproliferative activity. Modulation of the cell cycle and apoptotic effects of active compounds were further evaluated in MCF‐7 cells. Of these, 6‐bromo[1,2,5]selenadiazolo[3,4‐b]pyridine (2a) was the most active, with an apoptogenic effect 3.9 times higher than that of camptothecin, which was used as a positive control. Compound 2a also provoked cell cycle arrest with a significant decrease in the G0/G1 phase cell population and an increase in S and G2/M cells, thus suggesting mitotic arrest prior to metaphase.


International Journal of Pharmaceutics | 2014

Thermosensitive hydrogels of poly(methyl vinyl ether-co-maleic anhydride) - Pluronic(®) F127 copolymers for controlled protein release.

Esther Moreno; Juana Schwartz; Eneko Larrañeta; Paul Nguewa; Carmen Sanmartín; Maite Agüeros; Juan M. Irache; Socorro Espuelas

Thermosensitive hydrogels are of a great interest due to their many biomedical and pharmaceutical applications. In this study, we synthesized a new series of random poly (methyl vinyl ether-co-maleic anhydride) (Gantrez(®) AN, GZ) and Pluronic(®) F127 (PF127) copolymers (GZ-PF127), that formed thermosensitive hydrogels whose gelation temperature and mechanical properties could be controlled by the molar ratio of GZ and PF127 polymers and the copolymer concentration in water. Gelation temperatures tended to decrease when the GZm/PF127 ratio increased. Thus, at a fixed GZm/PF127 value, sol-gel temperatures decreased at higher copolymer concentrations. Moreover, these hydrogels controlled the release of proteins such as bovine serum albumin (BSA) and recombinant recombinant kinetoplastid membrane protein of Leishmania (rKMP-11) more than the PF127 system. Toxicity studies carried out in J774.2 macrophages showed that cell viability was higher than 80%. Finally, histopathological analysis revealed that subcutaneous administration of low volumes of these hydrogels elicited a tolerable inflammatory response that could be useful to induce immune responses against the protein cargo in the development of vaccine adjuvants.


Expert Opinion on Drug Delivery | 2014

Nanoparticles as multifunctional devices for the topical treatment of cutaneous leishmaniasis

Esther Moreno; Juana Schwartz; Celia Fernández; Carmen Sanmartín; Paul Nguewa; Juan M. Irache; Socorro Espuelas

Introduction: Cutaneous and mucocutaneous leishmaniasis are major tropical skin diseases. Topical treatment is currently limited to the least severe forms of cutaneous leishmaniasis (CL) without risk of dissemination. It is also recommended in combination with systemic therapy for more severe forms. Progresses in this modality of treatment are hindered by the heterogeneity of the disease and shortcomings in the clinical trials. Areas covered: This review overlooks three major modalities of topical therapies in use or under investigation against CL: chemotherapy, photodynamic therapy and immunotherapy; either with older compounds such as paramomycin or more recent nitric oxide donors, antimicrobial peptides or silver derivatives. The advantages and limitations of their administration with newer formulation strategies such as nanoparticles (NPs) are discussed. Expert opinion: The efficacy of a topical treatment against CL depends not only on the intrinsic antileishmanial activity of the drug but also on the amount of drug available in the dermis. NPs as sustained release systems and permeation enhancers could favour the creation of a drug reservoir in the dermis. Additionally, certain NPs have immunomodulatory properties or wound healing capabilities of benefit in CL treatment. Pending task is the selective delivery of active compounds to intracellular amastigotes, because even small NPs are unable to penetrate deeply into the skin to encounter infected macrophages (except in ulcerative lesions).


Current Medicinal Chemistry | 2013

Bisacylimidoselenocarbamates Cause G2/M Arrest Associated with the Modulation of CDK1 and Chk2 in Human Breast Cancer MCF-7 Cells

Iranzu Lamberto; Daniel Plano; Esther Moreno; María Font; Juan Antonio Palop; Carmen Sanmartín; Ignacio Encío

Bisacylimidoselenocarbamate derivatives (BSC) are potent anticancer agents with a strong cytotoxic activity against different types of tumour cells. Based in phosphatidylserine exposure on the cell membranes we show that BSC treatment resulted in enhanced cell death in leukaemia CCRF-CEM cells. DNA fragmentation detection in breast adenocarcinoma MCF-7 cells showed that BSC triggered cell death is concentration and time dependent. We also show that two of these compounds, BSC 3g and 3n, cause cell-cycle arrest in the late G2/M in MCF-7 cells. Consistent with this, a reduction in CDK1 and CDK2 expression with no change in cyclin A an B1 was observed in this cell line. Activation of caspase-2 was also detected. However, the involvement of the caspase-dependent pathway in the process of cell death induced by either BSC 3g or 3n is discarded since cell death could not be prevented by pretreatment with the pancaspase inhibitor z-VAD-fmk. Moreover, since reduced levels of p21(CIP1) and Chk2 proteins but no change in p53 levels could be detected in MCF-7 cells after BSC 3g or 3n treatment our results suggest that BSC treated cells die from lethal mitosis.


European Journal of Pharmaceutical Sciences | 2014

Topical treatment of L. major infected BALB/c mice with a novel diselenide chitosan hydrogel formulation

Juana Schwartz; Esther Moreno; Celia Fernández; I. Navarro-Blasco; Paul Nguewa; Juan Antonio Palop; Juan M. Irache; Carmen Sanmartín; Socorro Espuelas

Topical therapy is the ideal outpatient treatment of cutaneous leishmaniasis (CL) because of the ease of administration and lower cost. It could be suitable as monotherapy for localized cutaneous leishmaniasis (LCL) or in combination with systemic therapies for more severe forms of the disease. Although paromomycin (PM) ointment can be recommended for the treatment of LCL caused by Leishmaniamajor, a more effective topical treatment should be achieved regarding the physicochemical properties of this aminoglucoside and its rather poor intrinsic antileishmanial activity, that hampers the accumulation of enough amount of drug in the dermis (where the infected macrophages home) to exert its activity. In this work, we determined a 50% effective dose of 5.6 μM for a novel compound, bis-4-aminophenyldiselenide, against L. major intracellular amastigotes. This compound and PM were formulated in chitosan hydrogels and ex vivo permeation and retention studies in the different skin layers were performed with pig ear skin in Franz diffusion cells. The results showed that less than 2-4% of the diselenide drug penetrated and permeated through the skin. In contrast, the percentage of PM penetration was about 25-60% without important retention in the skin. When topically applied to lesions of L. major infected BALB/c mice, the novel diselenide chitosan formulation was unable to slow lesion progression and reduce parasite burden. Considerations during the process of novel drug development and formulation discovery algorithm for CL are discussed.


European Journal of Medicinal Chemistry | 2014

Novel hybrid selenosulfonamides as potent antileishmanial agents.

Ylenia Baquedano; Esther Moreno; Socorro Espuelas; Paul Nguewa; María Font; Kilian Jesús Gutierrez; Antonio Jiménez-Ruiz; Juan Antonio Palop; Carmen Sanmartín

Diselenide and sulfonamide derivatives have recently attracted considerable interest as leishmanicidal agents in drug discovery. In this study, a novel series of sixteen hybrid selenosulfonamides has been synthesized and screened for their in vitro activity against Leishmania infantum intracellular amastigotes and THP-1 cells. These assays revealed that most of the compounds exhibited antileishmanial activity in the low micromolar range and led us to identify three lead compounds (derivatives 2, 7 and 14) with IC50 values ranging from 0.83 to 1.47 μM and selectivity indexes (SI) over 17, much higher than those observed for the reference drugs miltefosine and edelfosine. When evaluated against intracellular amastigotes, hybrid compound 7 emerged as the most active compound (IC50 = 2.8 μM), showing higher activity and much less toxicity against THP-1 cells than edelfosine. These compounds could potentially serve as templates for future drug-optimization and drug-development efforts for their use as therapeutic agents in developing countries.


Antimicrobial Agents and Chemotherapy | 2016

Novel heteroaryl selenocyanates and diselenides as potent antileishmanial agents

Ylenia Baquedano; Verónica Alcolea; Miguel A. Toro; Killian Jesús Gutiérrez; Paul Nguewa; María Font; Esther Moreno; Socorro Espuelas; Antonio Jiménez-Ruiz; Juan Antonio Palop; Daniel Plano; Carmen Sanmartín

ABSTRACT A series of new selenocyanates and diselenides bearing interesting bioactive scaffolds (quinoline, quinoxaline, acridine, chromene, furane, isosazole, etc.) was synthesized, and their in vitro leishmanicidal activities against Leishmania infantum amastigotes along with their cytotoxicities in human THP-1 cells were determined. Interestingly, most tested compounds were active in the low micromolar range and led us to identify four lead compounds (1h, 2d, 2e, and 2f) with 50% effective dose (ED50) values ranging from 0.45 to 1.27 μM and selectivity indexes of >25 for all of them, much higher than those observed for the reference drugs. These active derivatives were evaluated against infected macrophages, and in order to gain preliminary knowledge about their possible mechanism of action, the inhibition of trypanothione reductase (TryR) was measured. Among these novel structures, compounds 1h (3,5-dimethyl-4-isoxazolyl selenocyanate) and 2d [3,3′-(diselenodiyldimethanediyl)bis(2-bromothiophene)] exhibited good association between TryR inhibitory activity and antileishmanial potency, pointing to 1h, for its excellent theoretical ADME (absorption, distribution, metabolism, and excretion) properties, as the most promising lead molecule for leishmancidal drug design.


Nanomedicine: Nanotechnology, Biology and Medicine | 2015

Assessment of β-lapachone loaded in lecithin-chitosan nanoparticles for the topical treatment of cutaneous leishmaniasis in L. major infected BALB/c mice

Esther Moreno; Juana Schwartz; Esther Larrea; Iosune Conde; María Font; Carmen Sanmartín; Juan M. Irache; Socorro Espuelas

UNLABELLED Patients affected by cutaneous leishmaniasis need a topical treatment which cures lesions without leaving scars. Lesions are produced not only by the parasite but also by an uncontrolled and persistent inflammatory immune response. In this study, we proposed the loading of β-lapachone (β-LP) in lecithin-chitosan nanoparticles (NP) for targeting the drug to the dermis, where infected macrophages reside, and promote wound healing. Although the loading of β-LP in NP did not influence the drug antileishmanial activity it was critical to achieve important drug accumulation in the dermis and permeation through the skin. When topically applied in Leishmania major infected BALB/c mice, β-LP NP achieved no parasite reduction but they stopped the lesion progression. Immuno-histopathological assays in CL lesions and quantitative mRNA studies in draining lymph nodes confirmed that β-LP exhibited anti-inflammatory activity leading to the down-regulation of IL-1β and COX-2 expression and a decrease of neutrophils infiltrate. FROM THE CLINICAL EDITOR Cutaneous leishmaniasis often leaves patients with unsightly scars due to the bodys inflammatory response to the infection. The authors in this paper described topical treatment using β-lapachone (β- LP) loaded in lecithin-chitosan nanoparticles (NP) in an animal model. Results confirmed the reduction of inflammatory response without affecting the parasite killing efficacy. These findings would pave way for further clinical testing in the near future.


European Journal of Pharmaceutical Sciences | 2014

A dihydroselenoquinazoline inhibits S6 ribosomal protein signalling, induces apoptosis and inhibits autophagy in MCF-7 cells

Esther Moreno; Dahlia Doughty-Shenton; Daniel Plano; María Font; Ignacio Encío; Juan Antonio Palop; Carmen Sanmartín

The PI3K/Akt/mTOR/S6 ribosomal protein signalling pathway is a key potential target in breast cancer therapy, playing a central role in proliferation and cell survival. In this study, we found that the seleno-compound 2,4-dihydroselenoquinazoline (3a) generally inhibited this signalling axis in MCF-7 breast cancer cells and caused downregulation of S6 ribosomal protein phosphorylation in a dose- and time-dependent manner. Furthermore, 3a caused a dose- and time-dependent decrease in MCF-7 cell viability as well as cell cycle arrest in G2/M. Interestingly 3a also induced apoptosis, as evidenced by cleavage of PARP and caspase-7, and inhibited autophagy, as demonstrated by accumulation of LC3-II and p62/SQSTM1. Given that induction of autophagy has been previously described as a mechanism by which some breast cancer cells counteract proapoptotic signalling and develop resistance to anti-hormone therapy, this suggests that this derivative, which both triggers apoptosis and inhibits autophagy, may be beneficial in preventing and overcoming resistance in breast cancer cells. The data also show the complexity of this signalling axis which is far from being understood.


International Journal of Pharmaceutics | 2017

Skin vaccination using microneedles coated with a plasmid DNA cocktail encoding nucleosomal histones of Leishmania spp.

Esther Moreno; Juana Schwartz; A. Calvo; Laura Blanco; Esther Larrea; Juan M. Irache; Carmen Sanmartín; Sion Coulman; Manuel Soto; James Caradoc Birchall; Socorro Espuelas

Vaccine delivery using microneedles (MNs) represents a safe, easily disposable and painless alternative to traditional needle immunizations. The MN delivery of DNA vaccines to the dermis may result in a superior immune response and/or an equivalent immune response at a lower vaccine dose (dose-sparing). This could be of special interest for immunization programs against neglected tropical diseases such as leishmaniasis. In this work, we loaded a MN device with 60μg of a plasmid DNA cocktail encoding the Leishmania infantum nucleosomal histones H2A, H2B, H3 and H4 and compared its immunogenicity and protective capacity against conventional s.c. or i.d. injection of the plasmid. Mice immunized with MNs showed increased ratios of IFN-γ/IL-10, IFN-γ/IL-13, IFN-γ/IL-4, and IFN-γ/TGF-β in the spleens and lymph nodes compared with mice immunized by s.c. and i.d. routes. Furthermore, CCXCL9, CXCL10 and CCL2 levels were also higher. These data suggest that the nucleic acid immunization using MNs produced a better bias towards a Th1 response. However, none of the immunizations strategies were able to control Leishmania major infection in BALB/c mice, as illustrated by an increase in lesion size and parasite burden.

Collaboration


Dive into the Esther Moreno's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ignacio Encío

Universidad Pública de Navarra

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge