Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul Nguewa is active.

Publication


Featured researches published by Paul Nguewa.


BMC Cancer | 2010

Antitumor and antiangiogenic effect of the dual EGFR and HER-2 tyrosine kinase inhibitor lapatinib in a lung cancer model

Roque Diaz; Paul Nguewa; Ricardo Parrondo; Carlos Perez-Stable; Irene Manrique; Miriam Redrado; Raúl Catena; María Collantes; Iván Peñuelas; Juan Antonio Díaz-González; Alfonso Calvo

BackgroundThere is strong evidence demonstrating that activation of epidermal growth factor receptors (EGFRs) leads to tumor growth, progression, invasion and metastasis. Erlotinib and gefitinib, two EGFR-targeted agents, have been shown to be relevant drugs for lung cancer treatment. Recent studies demonstrate that lapatinib, a dual tyrosine kinase inhibitor of EGFR and HER-2 receptors, is clinically effective against HER-2-overexpressing metastatic breast cancer. In this report, we investigated the activity of lapatinib against non-small cell lung cancer (NSCLC).MethodsWe selected the lung cancer cell line A549, which harbors genomic amplification of EGFR and HER-2. Proliferation, cell cycle analysis, clonogenic assays, and signaling cascade analyses (by western blot) were performed in vitro. In vivo experiments with A549 cells xenotransplanted into nude mice treated with lapatinib (with or without radiotherapy) were also carried out.ResultsLapatinib dramatically reduced cell proliferation (P < 0.0001), DNA synthesis (P < 0.006), and colony formation capacity (P < 0.0001) in A549 cells in vitro. Furthermore, lapatinib induced G1 cell cycle arrest (P < 0.0001) and apoptotic cell death (P < 0.0006) and reduced cyclin A and B1 levels, which are regulators of S and G2/M cell cycle stages, respectively. Stimulation of apoptosis in lapatinib-treated A549 cells was correlated with increased cleaved PARP, active caspase-3, and proapoptotic Bak-1 levels, and reduction in the antiapoptic IAP-2 and Bcl-xL protein levels. We also demonstrate that lapatinib altered EGFR/HER-2 signaling pathways reducing p-EGFR, p-HER-2, p-ERK1/2, p-AKT, c-Myc and PCNA levels. In vivo experiments revealed that A549 tumor-bearing mice treated with lapatinib had significantly less active tumors (as assessed by PET analysis) (P < 0.04) and smaller in size than controls. In addition, tumors from lapatinib-treated mice showed a dramatic reduction in angiogenesis (P < 0.0001).ConclusionOverall, these data suggest that lapatinib may be a clinically useful agent for the treatment of lung cancer.


International Journal of Pharmaceutics | 2014

Thermosensitive hydrogels of poly(methyl vinyl ether-co-maleic anhydride) - Pluronic(®) F127 copolymers for controlled protein release.

Esther Moreno; Juana Schwartz; Eneko Larrañeta; Paul Nguewa; Carmen Sanmartín; Maite Agüeros; Juan M. Irache; Socorro Espuelas

Thermosensitive hydrogels are of a great interest due to their many biomedical and pharmaceutical applications. In this study, we synthesized a new series of random poly (methyl vinyl ether-co-maleic anhydride) (Gantrez(®) AN, GZ) and Pluronic(®) F127 (PF127) copolymers (GZ-PF127), that formed thermosensitive hydrogels whose gelation temperature and mechanical properties could be controlled by the molar ratio of GZ and PF127 polymers and the copolymer concentration in water. Gelation temperatures tended to decrease when the GZm/PF127 ratio increased. Thus, at a fixed GZm/PF127 value, sol-gel temperatures decreased at higher copolymer concentrations. Moreover, these hydrogels controlled the release of proteins such as bovine serum albumin (BSA) and recombinant recombinant kinetoplastid membrane protein of Leishmania (rKMP-11) more than the PF127 system. Toxicity studies carried out in J774.2 macrophages showed that cell viability was higher than 80%. Finally, histopathological analysis revealed that subcutaneous administration of low volumes of these hydrogels elicited a tolerable inflammatory response that could be useful to induce immune responses against the protein cargo in the development of vaccine adjuvants.


Current Medicinal Chemistry | 2012

Innovative Lead Compounds and Formulation Strategies As Newer Kinetoplastid Therapies

Socorro Espuelas; Daniel Plano; Paul Nguewa; María Font; J. A. Palop; Juan M. Irache; Carmen Sanmartín

The protozoan diseases leishmaniasis, human African trypanosomiasis (HAT) and Chagas disease (CD) are responsible for substantial global morbidity and mortality in tropical and subtropical regions. Environmental changes, drug resistance and immunosuppression are contributing to the emergence and spread of these diseases. In the absence of safe and efficient vaccines, chemotherapy, together with vector control, remains the most important measure to control kinetoplastid diseases. Nevertheless, the current chemotherapeutic treatments are clearly inadequate because of their toxic effects, generation of resistances as well as route and schedules of administration not adapted to the field-conditions. This review overlooks the strategies that can be addressed to meet immediately the patient needs such as the reconsideration of current regimens of administration and the rational combination of drugs in use. In the medium-long term, due to new methodologies of medicinal-chemistry, the screening from natural products and the identification of new therapeutic targets, new lead compounds have great chance to advance through the drug development pipeline to clinic. Modern pharmaceutical formulation strategies and nanomedicines also merit a place in view of the benefits of a single dose of liposomal Amphotericin B (AmBisome®) against visceral leishmaniasis. BBB-targeted nanodevices could be suited for selective delivery of drugs against HAT encephalitic phase. Bioadhesive nanoparticles can be proposed to enhance the bioavailability of drugs after oral administration by reason of improving the drug solubility, and permeability across the intestinal epithelia.


Current Medicinal Chemistry | 2012

The quinoline imidoselenocarbamate EI201 blocks the AKT/mTOR pathway and targets cancer stem cells leading to a strong antitumor activity.

Elena Ibáñez; A. Agliano; Celia Prior; Paul Nguewa; M. Redrado; I. Gonzalez-Zubeldia; Daniel Plano; J. A. Palop; Carmen Sanmartín; Alfonso Calvo

Methylimidoselenocarbamates have previously proven to display potent antitumor activities. In the present study we show that these compounds act as multikinase inhibitors. We found that the most effective compound, quinoline imidoselenocarbamate EI201, inhibits the PI3K/AKT/mTOR pathway, which is persistently activated and contributes to malignant progression in various cancers. EI201 blocked the phosphorylation of AKT, mTOR and several of its downstream regulators (p70S6K and 4E-BP1) and ERK1/2 in PC-3, HT-29 and MCF-7 cells in vitro, inducing both autophagy and apoptosis. EI201 also contributes to the loss of maintenance of the selfrenewal and tumorigenic capacity of cancer stem cells (CSCs). 0.1 μmol/L EI201 triggered a reduction in size and number of tumorspheres in PC-3, HT-29 and MCF-7 cells and 4 μmol/L induced the elimination of almost all the tumorspheres in the three studied cell lines. In addition, EI201 suppressed almost 80% prostate tumor growth in vivo (p < 0.01) compared to controls at a relatively low dose (10 mg/kg) in a mouse xenograft model. There was a significant decrease in the subcutaneous primary tumor [18F]-FDG uptake (76.5% reduction, p < 0.05) and in the total tumor burden (76.8% reduction, p < 0.05) after EI201 treatment compared to vehicle control, without causing toxicity in mice. Taken together, our results support further development of EI201 as a novel multi-kinase inhibitor that may be useful against cancers with aberrant upregulation of PI3K/AKT and MAPK signaling pathways.


Clinical Cancer Research | 2011

Inhibitor of Differentiation-1 as a Novel Prognostic Factor in NSCLC Patients with Adenocarcinoma Histology and Its Potential Contribution to Therapy Resistance

Mariano Ponz-Sarvise; Paul Nguewa; Maria J. Pajares; Jackeline Agorreta; Maria D. Lozano; Miriam Redrado; Ruben Pio; Carmen Behrens; Ignacio I. Wistuba; Carlos García-Franco; Jesús García-Foncillas; Luis M. Montuenga; Alfonso Calvo; Ignacio Gil-Bazo

Purpose: High inhibitor of differentiation-1 (Id1) levels have been found in some tumor types. We aimed to study Id1 levels and their prognostic impact in a large series of stages I to IV non-small cell lung cancer (NSCLC) patients. Experiments in cell lines and cells derived from malignant pleural effusions (MPE) were also carried out. Experimental Design: A total of 346 NSCLC samples (three different cohorts), including 65 matched nonmalignant tissues, were evaluated for Id1 expression by using immunohistochemistry. Additional data from a fourth cohort including 111 patients were obtained for Id1 mRNA expression analysis by using publicly available microarrays. In vitro proliferation assays were conducted to characterize the impact of Id1 on growth and treatment sensitivity. Results: Significantly higher Id1 protein levels were found in tumors compared with normal tissues (P < 0.001) and in squamous carcinomas compared with adenocarcinomas (P < 0.001). In radically treated stages I to III patients and stage IV patients treated with chemotherapy, higher Id1 levels were associated with a shorter disease-free survival and overall survival in adenocarcinoma patients in a log-rank test. A Cox model confirmed the independent prognostic value of Id1 levels for both stages I to III and stage IV patients. In silico analysis confirmed a correlation between higher Id1 mRNA levels and poor prognosis for adenocarcinoma subjects. In vitro Id1 silencing in radio/chemotherapy-resistant adenocarcinoma cells from MPEs restored sensitivity to both therapies. Conclusions: In our series, Id1 levels showed an independent prognostic value in patients with adenocarcinoma, regardless of the stage. Id1 silencing may sensitize adenocarcinoma cells to radiotherapy and chemotherapy. Clin Cancer Res; 17(12); 4155–66. ©2011 AACR.


Expert Opinion on Drug Delivery | 2014

Nanoparticles as multifunctional devices for the topical treatment of cutaneous leishmaniasis

Esther Moreno; Juana Schwartz; Celia Fernández; Carmen Sanmartín; Paul Nguewa; Juan M. Irache; Socorro Espuelas

Introduction: Cutaneous and mucocutaneous leishmaniasis are major tropical skin diseases. Topical treatment is currently limited to the least severe forms of cutaneous leishmaniasis (CL) without risk of dissemination. It is also recommended in combination with systemic therapy for more severe forms. Progresses in this modality of treatment are hindered by the heterogeneity of the disease and shortcomings in the clinical trials. Areas covered: This review overlooks three major modalities of topical therapies in use or under investigation against CL: chemotherapy, photodynamic therapy and immunotherapy; either with older compounds such as paramomycin or more recent nitric oxide donors, antimicrobial peptides or silver derivatives. The advantages and limitations of their administration with newer formulation strategies such as nanoparticles (NPs) are discussed. Expert opinion: The efficacy of a topical treatment against CL depends not only on the intrinsic antileishmanial activity of the drug but also on the amount of drug available in the dermis. NPs as sustained release systems and permeation enhancers could favour the creation of a drug reservoir in the dermis. Additionally, certain NPs have immunomodulatory properties or wound healing capabilities of benefit in CL treatment. Pending task is the selective delivery of active compounds to intracellular amastigotes, because even small NPs are unable to penetrate deeply into the skin to encounter infected macrophages (except in ulcerative lesions).


The Prostate | 2015

Sunitinib reduces tumor hypoxia and angiogenesis, and radiosensitizes prostate cancer stem‐like cells

Roque Diaz; Paul Nguewa; Miriam Redrado; Irene Manrique; Alfonso Calvo

The need for new treatments for advanced prostate cancer has fostered the experimental use of targeted therapies. Sunitinib is a multi‐tyrosine kinase inhibitor that mainly targets membrane‐bound receptors of cells within the tumor microenvironment, such as endothelial cells and pericytes. However, recent studies suggest a direct effect on tumor cells. In the present study, we have evaluated both direct and indirect effects of Sunitinib in prostate cancer and how this drug regulates hypoxia, using in vitro and in vivo models.


European Journal of Pharmaceutical Sciences | 2014

Topical treatment of L. major infected BALB/c mice with a novel diselenide chitosan hydrogel formulation

Juana Schwartz; Esther Moreno; Celia Fernández; I. Navarro-Blasco; Paul Nguewa; Juan Antonio Palop; Juan M. Irache; Carmen Sanmartín; Socorro Espuelas

Topical therapy is the ideal outpatient treatment of cutaneous leishmaniasis (CL) because of the ease of administration and lower cost. It could be suitable as monotherapy for localized cutaneous leishmaniasis (LCL) or in combination with systemic therapies for more severe forms of the disease. Although paromomycin (PM) ointment can be recommended for the treatment of LCL caused by Leishmaniamajor, a more effective topical treatment should be achieved regarding the physicochemical properties of this aminoglucoside and its rather poor intrinsic antileishmanial activity, that hampers the accumulation of enough amount of drug in the dermis (where the infected macrophages home) to exert its activity. In this work, we determined a 50% effective dose of 5.6 μM for a novel compound, bis-4-aminophenyldiselenide, against L. major intracellular amastigotes. This compound and PM were formulated in chitosan hydrogels and ex vivo permeation and retention studies in the different skin layers were performed with pig ear skin in Franz diffusion cells. The results showed that less than 2-4% of the diselenide drug penetrated and permeated through the skin. In contrast, the percentage of PM penetration was about 25-60% without important retention in the skin. When topically applied to lesions of L. major infected BALB/c mice, the novel diselenide chitosan formulation was unable to slow lesion progression and reduce parasite burden. Considerations during the process of novel drug development and formulation discovery algorithm for CL are discussed.


European Journal of Medicinal Chemistry | 2014

Novel hybrid selenosulfonamides as potent antileishmanial agents.

Ylenia Baquedano; Esther Moreno; Socorro Espuelas; Paul Nguewa; María Font; Kilian Jesús Gutierrez; Antonio Jiménez-Ruiz; Juan Antonio Palop; Carmen Sanmartín

Diselenide and sulfonamide derivatives have recently attracted considerable interest as leishmanicidal agents in drug discovery. In this study, a novel series of sixteen hybrid selenosulfonamides has been synthesized and screened for their in vitro activity against Leishmania infantum intracellular amastigotes and THP-1 cells. These assays revealed that most of the compounds exhibited antileishmanial activity in the low micromolar range and led us to identify three lead compounds (derivatives 2, 7 and 14) with IC50 values ranging from 0.83 to 1.47 μM and selectivity indexes (SI) over 17, much higher than those observed for the reference drugs miltefosine and edelfosine. When evaluated against intracellular amastigotes, hybrid compound 7 emerged as the most active compound (IC50 = 2.8 μM), showing higher activity and much less toxicity against THP-1 cells than edelfosine. These compounds could potentially serve as templates for future drug-optimization and drug-development efforts for their use as therapeutic agents in developing countries.


Antimicrobial Agents and Chemotherapy | 2016

Novel heteroaryl selenocyanates and diselenides as potent antileishmanial agents

Ylenia Baquedano; Verónica Alcolea; Miguel A. Toro; Killian Jesús Gutiérrez; Paul Nguewa; María Font; Esther Moreno; Socorro Espuelas; Antonio Jiménez-Ruiz; Juan Antonio Palop; Daniel Plano; Carmen Sanmartín

ABSTRACT A series of new selenocyanates and diselenides bearing interesting bioactive scaffolds (quinoline, quinoxaline, acridine, chromene, furane, isosazole, etc.) was synthesized, and their in vitro leishmanicidal activities against Leishmania infantum amastigotes along with their cytotoxicities in human THP-1 cells were determined. Interestingly, most tested compounds were active in the low micromolar range and led us to identify four lead compounds (1h, 2d, 2e, and 2f) with 50% effective dose (ED50) values ranging from 0.45 to 1.27 μM and selectivity indexes of >25 for all of them, much higher than those observed for the reference drugs. These active derivatives were evaluated against infected macrophages, and in order to gain preliminary knowledge about their possible mechanism of action, the inhibition of trypanothione reductase (TryR) was measured. Among these novel structures, compounds 1h (3,5-dimethyl-4-isoxazolyl selenocyanate) and 2d [3,3′-(diselenodiyldimethanediyl)bis(2-bromothiophene)] exhibited good association between TryR inhibitory activity and antileishmanial potency, pointing to 1h, for its excellent theoretical ADME (absorption, distribution, metabolism, and excretion) properties, as the most promising lead molecule for leishmancidal drug design.

Collaboration


Dive into the Paul Nguewa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge