Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Esther T. Stoeckli is active.

Publication


Featured researches published by Esther T. Stoeckli.


Neuron | 2000

Neuropilin-2 Regulates the Development of Select Cranial and Sensory Nerves and Hippocampal Mossy Fiber Projections

Hang Chen; Anil Bagri; Joel Zupicich; Yimin Zou; Esther T. Stoeckli; Samuel J. Pleasure; Daniel H. Lowenstein; William C. Skarnes; Alain Chédotal; Marc Tessier-Lavigne

Neuropilin-1 and neuropilin-2 bind differentially to different class 3 semaphorins and are thought to provide the ligand-binding moieties in receptor complexes mediating repulsive responses to these semaphorins. Here, we have studied the function of neuropilin-2 through analysis of a neuropilin-2 mutant mouse, which is viable and fertile. Repulsive responses of sympathetic and hippocampal neurons to Sema3F but not to Sema3A are abolished in the mutant. Marked defects are observed in the development of several cranial nerves, in the initial central projections of spinal sensory axons, and in the anterior commissure, habenulo-interpeduncular tract, and the projections of hippocampal mossyfiber axons in the infrapyramidal bundle. Our results show that neuropilin-2 is an essential component of the Sema3F receptor and identify key roles for neuropilin-2 in axon guidance in the PNS and CNS.


Cell | 2000

Squeezing Axons Out of the Gray Matter: A Role for Slit and Semaphorin Proteins from Midline and Ventral Spinal Cord

Yimin Zou; Esther T. Stoeckli; Hang Chen; Marc Tessier-Lavigne

Commissural axons cross the nervous system midline and then turn to grow alongside it, neither recrossing nor projecting back into ventral regions. In Drosophila, the midline repellent Slit prevents recrossing: axons cross once because they are initially unresponsive to Slit, becoming responsive only upon crossing. We show that commissural axons in mammals similarly acquire responsiveness to a midline repellent activity upon crossing. Remarkably, they also become responsive to a repellent activity from ventral spinal cord, helping explain why they never reenter that region. Several Slit and Semaphorin proteins, expressed in midline and/or ventral tissues, mimic these repellent activities, and midline guidance defects are observed in mice lacking neuropilin-2, a Semaphorin receptor. Thus, Slit and Semaphorin repellents from midline and nonmidline tissues may help prevent crossing axons from reentering gray matter, squeezing them into surrounding fiber tracts.


Neuron | 1995

Axonin-1, Nr-CAM, and Ng-CAM play different roles in the in vivo guidance of chick commissural neurons.

Esther T. Stoeckli; Lynn T. Landmesser

Immunoglobulin/fibronectin type III-like cell adhesion molecules have been implicated in axon pathfinding based on their expression pattern in the developing nervous system and on their complex interactions described in vitro. The present in vivo study demonstrates that interactions by two of these molecules, axonin-1 on commissural growth cones and Nr-CAM on floor plate cells, are required for accurate pathfinding at the midline. When axonin-1 or Nr-CAM interactions were perturbed, many commissural axons failed to cross the midline and turned instead along the ipsilateral floor plate border. In contrast, though perturbation of Ng-CAM produced a defasciculation of the commissural neurites, it did not affect their guidance across the floor plate.


Nature Neuroscience | 2005

Sonic hedgehog guides commissural axons along the longitudinal axis of the spinal cord

Dimitris Bourikas; Vladimir Pekarik; Thomas Baeriswyl; Åsa Grunditz; Rejina Sadhu; Michele Nardó; Esther T. Stoeckli

Dorsal commissural axons in the developing spinal cord cross the floor plate, then turn rostrally and grow along the longitudinal axis, close to the floor plate. We used a subtractive hybridization approach to identify guidance cues responsible for the rostral turn in chicken embryos. One of the candidates was the morphogen Sonic hedgehog (Shh). Silencing of the gene SHH (which encodes Shh) by in ovo RNAi during commissural axon navigation demonstrated a repulsive role in post-commissural axon guidance. This effect of Shh was not mediated by Patched (Ptc) and Smoothened (Smo), the receptors that mediate effects of Shh in morphogenesis and commissural axon growth toward the floor plate. Rather, functional in vivo studies showed that the repulsive effect of Shh on postcommissural axons was mediated by Hedgehog interacting protein (Hip).


Nature Biotechnology | 2003

Screening for gene function in chicken embryo using RNAi and electroporation

Vladimir Pekarik; Dimitris Bourikas; Nicola Miglino; Pascal Joset; Stephan Preiswerk; Esther T. Stoeckli

In the postgenomic era the elucidation of the physiological function of genes has become the rate-limiting step in the quest to understand the development and function of living organisms. Gene functions cannot be determined by high-throughput methods but require analysis in the context of the entire organism. This is particularly true in the developing vertebrate nervous system. Because of its easy accessibility in the egg, the chicken embryo has been the model of choice for developmental in vivo studies. However, its usefulness has been hampered by a lack of methods for genetic manipulation. Here we describe an approach that could compensate for this disadvantage. By combining gene silencing by dsRNA (through RNA interference, RNAi) with in ovo electroporation, we developed an efficient method to induce loss of gene function in vivo during the development of the chicken CNS. This method opens new possibilities for studying gene function not only by gain-of-function but also by loss-of-function approaches and therefore represents a new tool for functional genomics.


The EMBO Journal | 1996

Neuroserpin, an axonally secreted serine protease inhibitor.

Thomas Osterwalder; Contartese J; Esther T. Stoeckli; Kuhn Tb; Peter Sonderegger

We have identified and chromatographically purified an axonally secreted glycoprotein of CNS and PNS neurons. Several peptides derived from it were microsequenced. Based on these sequences, a fragment of the corresponding cDNA was amplified and used as a probe to isolate a full length cDNA from a chicken brain cDNA library. Because the deduced amino acid sequence qualified the protein as a novel member of the serpin family of serine protease inhibitors, we called it neuroserpin. Analysis of the primary structural features further characterized neuroserpin as a heparin‐independent, functional inhibitor of a trypsin‐like serine protease. In situ hybridization revealed a predominantly neuronal expression during the late stages of neurogenesis and in the adult brain in regions which exhibit synaptic plasticity. Thus, neuroserpin might function as an axonally secreted regulator of the local extracellular proteolysis involved in the reorganization of the synaptic connectivity during development and synapse plasticity in the adult.


Neuron | 1997

Interference with Axonin-1 and NrCAM Interactions Unmasks a Floor-Plate Activity Inhibitory for Commissural Axons

Esther T. Stoeckli; Peter Sonderegger; G. Elisabeth Pollerberg; Lynn T. Landmesser

Axonin-1 and NrCAM were previously shown to be involved in the in vivo guidance of commissural growth cones across the floor plate of the embryonic chicken spinal cord. To further characterize their role in axon pathfinding, we developed a two-dimensional coculture system of commissural and floor-plate explants in which it was possible to study the behavior of growth cones upon floor-plate contact. Although commissural axons readily entered the floor plate under control conditions, perturbations of either axonin-1 or NrCAM interactions prevented the growth cones from entering the floor-plate explants. The presence of antiaxonin-1 resulted in the collapse of commissural growth cones upon contact with the floor plate. The perturbation of NrCAM interactions also resulted in an avoidance of the floor plate, but without inducing growth-cone collapse. Therefore, axonin-1 and NrCAM are crucial for the contact-mediated interaction between commissural growth cones and the floor plate, which in turn is required for the proper guidance of the axons across the ventral midline and their subsequent rostral turn into the longitudinal axis.


Journal of Biological Chemistry | 2010

Hereditary Sensory Neuropathy Type 1 Is Caused by the Accumulation of Two Neurotoxic Sphingolipids

Anke Penno; Mary M. Reilly; Henry Houlden; M Laura; Katharina Rentsch; Vera Niederkofler; Esther T. Stoeckli; Garth A. Nicholson; Florian Eichler; Robert H. Brown; Arnold von Eckardstein; Thorsten Hornemann

HSAN1 is an inherited neuropathy found to be associated with several missense mutations in the SPTLC1 subunit of serine palmitoyltransferase (SPT). SPT catalyzes the condensation of serine and palmitoyl-CoA, the initial step in the de novo synthesis of sphingolipids. Here we show that the HSAN1 mutations induce a shift in the substrate specificity of SPT, which leads to the formation of the two atypical deoxy-sphingoid bases (DSBs) 1-deoxy-sphinganine and 1-deoxymethyl-sphinganine. Both metabolites lack the C1 hydroxyl group of sphinganine and can therefore neither be converted to complex sphingolipids nor degraded. Consequently, they accumulate in the cell, as demonstrated in HEK293 cells overexpressing mutant SPTLC1 and lymphoblasts of HSAN1 patients. Elevated DSB levels were also found in the plasma of HSAN1 patients and confirmed in three groups of HSAN1 patients with different SPTLC1mutations. The DSBs show pronounced neurotoxic effects on neurite formation in cultured sensory neurons. The neurotoxicity co-occurs with a disturbed neurofilament structure in neurites when cultured in the presence of DSBs. Based on these observations, we conclude that HSAN1 is caused by a gain of function mutation, which results in the formation of two atypical and neurotoxic sphingolipid metabolites.


Current Opinion in Neurobiology | 1998

Axon guidance at choice points

Esther T. Stoeckli; Lynn T. Landmesser

The common theme in many recent axonal pathfinding studies, both in vertebrates and invertebrates, is the demonstration of the importance of a balance between positive and negative cues. The integration of multiple and often opposing molecular interactions at each site along the axons trajectory, especially at choice points, helps to fine tune the directional response of its growth cone, which continuously samples its environment for guidance cues. The dynamic regulation of the receptors for such cues, in response to extrinsic signals, also enhances the behavioral repertoire of growth cones at different points along their trajectory. Some of the molecules identified as being important for axon guidance at choice points are conserved between invertebrates and vertebrates (e.g. Robo and netrin), whereas other molecules have been identified, so far, only in invertebrates (e.g. Comm) or vertebrates (e.g. axonin-1 and NrCAM).


Neuron | 1999

F-Spondin Is Required for Accurate Pathfinding of Commissural Axons at the Floor Plate

Tal Burstyn-Cohen; Vered Tzarfaty; Ayala Frumkin; Yael Feinstein; Esther T. Stoeckli; Avihu Klar

The commissural axons project toward and across the floor plate. They then turn into the longitudinal axis, extending along the contralateral side of the floor plate. F-spondin, a protein produced and secreted by the floor plate, promotes adhesion and neurite extension of commissural neurons in vitro. Injection of purified F-spondin protein into the lumen of the spinal cord of chicken embryos in ovo resulted in longitudinal turning of commissural axons before reaching the floor plate, whereas neutralizing antibody (Ab) injections caused lateral turning at the contralateral floor plate boundary. These combined in vitro and in vivo results suggest that F-spondin is required to prevent the lateral drifting of the commissural axons after having crossed the floor plate.

Collaboration


Dive into the Esther T. Stoeckli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kuhn Tb

University of Zurich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christoph Rader

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge