Vera Niederkofler
University of Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vera Niederkofler.
Journal of Biological Chemistry | 2010
Anke Penno; Mary M. Reilly; Henry Houlden; M Laura; Katharina Rentsch; Vera Niederkofler; Esther T. Stoeckli; Garth A. Nicholson; Florian Eichler; Robert H. Brown; Arnold von Eckardstein; Thorsten Hornemann
HSAN1 is an inherited neuropathy found to be associated with several missense mutations in the SPTLC1 subunit of serine palmitoyltransferase (SPT). SPT catalyzes the condensation of serine and palmitoyl-CoA, the initial step in the de novo synthesis of sphingolipids. Here we show that the HSAN1 mutations induce a shift in the substrate specificity of SPT, which leads to the formation of the two atypical deoxy-sphingoid bases (DSBs) 1-deoxy-sphinganine and 1-deoxymethyl-sphinganine. Both metabolites lack the C1 hydroxyl group of sphinganine and can therefore neither be converted to complex sphingolipids nor degraded. Consequently, they accumulate in the cell, as demonstrated in HEK293 cells overexpressing mutant SPTLC1 and lymphoblasts of HSAN1 patients. Elevated DSB levels were also found in the plasma of HSAN1 patients and confirmed in three groups of HSAN1 patients with different SPTLC1mutations. The DSBs show pronounced neurotoxic effects on neurite formation in cultured sensory neurons. The neurotoxicity co-occurs with a disturbed neurofilament structure in neurites when cultured in the presence of DSBs. Based on these observations, we conclude that HSAN1 is caused by a gain of function mutation, which results in the formation of two atypical and neurotoxic sphingolipid metabolites.
Development | 2010
Vera Niederkofler; Thomas Baeriswyl; Regula Ott; Esther T. Stoeckli
The Necl/SynCAM subgroup of immunoglobulin superfamily cell adhesion molecules has been implicated in late stages of neural circuit formation. They were shown to be sufficient for synaptogenesis by their trans-synaptic interactions. Additionally, they are involved in myelination, both in the central and the peripheral nervous system, by mediating adhesion between glia cells and axons. Here, we show that Necls/SynCAMs are also required for early stages of neural circuit formation. We demonstrate a role for Necls/SynCAMs in post-crossing commissural axon guidance in the developing spinal cord in vivo. Necl3/SynCAM2, the family member that has not been characterized functionally so far, plays a crucial role in this process. It is expressed by floorplate cells and interacts with Necls/SynCAMs expressed by commissural axons to mediate a turning response in post-crossing commissural axons.
Neural Development | 2012
Melanie Philipp; Vera Niederkofler; Marc Debrunner; Tobias Alther; Beat Kunz; Esther T. Stoeckli
BackgroundAxons navigate to their future synaptic targets with the help of choice points, intermediate targets that express axon guidance cues. Once they reach a choice point, axons need to switch their response from attraction to repulsion in order to move on with the next stage of their journey. The mechanisms underlying the change in axonal responsiveness are poorly understood. Commissural axons become sensitive to the repulsive activity of Slits when they cross the ventral midline of the CNS. Responsiveness to Slits depends on surface expression of Robo receptors. In Drosophila, Commissureless (Comm) plays a crucial regulatory role in midline crossing by keeping Robo levels low on precommissural axons. Interestingly, to date no vertebrate homolog of comm has been identified. Robo3/Rig1 has been shown to control Slit sensitivity before the midline, but without affecting Robo1 surface expression.ResultsWe had identified RabGDI, a gene linked to human mental retardation and an essential component of the vesicle fusion machinery, in a screen for differentially expressed floor-plate genes. Downregulation of RabGDI by in ovo RNAi caused commissural axons to stall in the floor plate, phenocopying the effect observed after downregulation of Robo1. Conversely, premature expression of RabGDI prevented commissural axons from entering the floor plate. Furthermore, RabGDI triggered Robo1 surface expression in cultured commissural neurons. Taken together, our results identify RabGDI as a component of the switching mechanism that is required for commissural axons to change their response from attraction to repulsion at the intermediate target.ConclusionRabGDI takes over the functional role of fly Comm by regulating the surface expression of Robo1 on commissural axons in vertebrates. This in turn allows commissural axons to switch from attraction to repulsion at the midline of the spinal cord.
Cell | 2017
Victoria E. Abraira; Emily D. Kuehn; Anda M. Chirila; Mark W. Springel; Alexis A. Toliver; Amanda Zimmerman; Lauren L. Orefice; Kieran A. Boyle; Ling Bai; Bryan J. Song; Karleena A. Bashista; Thomas G. O'Neill; Justin Zhuo; Connie Tsan; Jessica Hoynoski; Michael Rutlin; Laura Kus; Vera Niederkofler; Masahiko Watanabe; Susan M. Dymecki; Sacha B. Nelson; Nathaniel Heintz; David I. Hughes; David D. Ginty
Summary The deep dorsal horn is a poorly characterized spinal cord region implicated in processing low-threshold mechanoreceptor (LTMR) information. We report an array of mouse genetic tools for defining neuronal components and functions of the dorsal horn LTMR-recipient zone (LTMR-RZ), a role for LTMR-RZ processing in tactile perception, and the basic logic of LTMR-RZ organization. We found an unexpectedly high degree of neuronal diversity in the LTMR-RZ: seven excitatory and four inhibitory subtypes of interneurons exhibiting unique morphological, physiological, and synaptic properties. Remarkably, LTMRs form synapses on between four and 11 LTMR-RZ interneuron subtypes, while each LTMR-RZ interneuron subtype samples inputs from at least one to three LTMR classes, as well as spinal cord interneurons and corticospinal neurons. Thus, the LTMR-RZ is a somatosensory processing region endowed with a neuronal complexity that rivals the retina and functions to pattern the activity of ascending touch pathways that underlie tactile perception.
Development | 2010
Andreas Holz; Heike Kollmus; Jesper Ryge; Vera Niederkofler; José M. Dias; Johan Ericson; Esther T. Stoeckli; Ole Kiehn; Hans-Henning Arnold
The transcription factors Nkx2.2 and Nkx2.9 have been proposed to execute partially overlapping functions in neuronal patterning of the ventral spinal cord in response to graded sonic hedgehog signaling. The present report shows that in mice lacking both Nkx2 proteins, the presumptive progenitor cells in the p3 domain of the neural tube convert to motor neurons (MN) and never acquire the fate of V3 interneurons. This result supports the concept that Nkx2 transcription factors are required to establish V3 progenitor cells by repressing the early MN lineage-specific program, including genes like Olig2. Nkx2.2 and Nkx2.9 proteins also perform an additional, hitherto unknown, function in the development of non-neuronal floor plate cells. Here, we demonstrate that loss of both Nkx2 genes results in an anatomically smaller and functionally impaired floor plate causing severe defects in axonal pathfinding of commissural neurons. Defective floor plates were also seen in Nkx2.2+/–;Nkx2.9–/– compound mutants and even in single Nkx2.9–/– mutants, suggesting that floor plate development is sensitive to dose and/or timing of Nkx2 expression. Interestingly, adult Nkx2.2+/–;Nkx2.9–/– compound-mutant mice exhibit abnormal locomotion, including a permanent or intermittent hopping gait. Drug-induced locomotor-like activity in spinal cords of mutant neonates is also affected, demonstrating increased variability of left-right and flexor-extensor coordination. Our data argue that the Nkx2.2 and Nkx2.9 transcription factors contribute crucially to the formation of neuronal networks that function as central pattern generators for locomotor activity in the spinal cord. As both factors affect floor plate development, control of commissural axon trajectories might be the underlying mechanism.
ACS Chemical Neuroscience | 2015
Vera Niederkofler; Tedi E. Asher; Susan M. Dymecki
The complex integration of neurotransmitter signals in the nervous system contributes to the shaping of behavioral and emotional constitutions throughout development. Imbalance among these signals may result in pathological behaviors and psychiatric illnesses. Therefore, a better understanding of the interplay between neurotransmitter systems holds potential to facilitate therapeutic development. Of particular clinical interest are the dopaminergic and serotonergic systems, as both modulate a broad array of behaviors and emotions and have been implicated in a wide range of affective disorders. Here we review evidence speaking to an interaction between the dopaminergic and serotonergic neuronal systems across development. We highlight data stemming from developmental, functional, and clinical studies, reflecting the importance of this transmonoaminergic interplay.
PLOS ONE | 2011
Claire Bacon; Volker Endris; Irwin Andermatt; Vera Niederkofler; Robert Waltereit; Dusan Bartsch; Esther T. Stoeckli; Gudrun Rappold
Slit-Robo signaling guides commissural axons away from the floor-plate of the spinal cord and into the longitudinal axis after crossing the midline. In this study we have evaluated the role of the Slit-Robo GTPase activating protein 3 (srGAP3) in commissural axon guidance using a knockout (KO) mouse model. Co-immunoprecipitation experiments confirmed that srGAP3 interacts with the Slit receptors Robo1 and Robo2 and immunohistochemistry studies showed that srGAP3 co-localises with Robo1 in the ventral and lateral funiculus and with Robo2 in the lateral funiculus. Stalling axons have been reported in the floor-plate of Slit and Robo mutant spinal cords but our axon tracing experiments revealed no dorsal commissural axon stalling in the floor plate of the srGAP3 KO mouse. Interestingly we observed a significant thickening of the ventral funiculus and a thinning of the lateral funiculus in the srGAP3 KO spinal cord, which has also recently been reported in the Robo2 KO. However, axons in the enlarged ventral funiculus of the srGAP3 KO are Robo1 positive but do not express Robo2, indicating that the thickening of the ventral funiculus in the srGAP3 KO is not a Robo2 mediated effect. We suggest a role for srGAP3 in the lateral positioning of post crossing axons within the ventrolateral funiculus.
bioRxiv | 2018
Esther T. Stoeckli; Thomas Baeriswyl; Georgia Tsapara; Vera Niederkofler; Jeannine A. Frei; Nicole H. Wilson; Matthias Gesemann
Cell migration and axon guidance are important steps in the formation of neural circuits. Both steps depend on the interactions between cell surface receptors and molecules on cells along the pathway. In addition to cell-cell adhesion, these molecular interactions provide guidance information. The fine-tuning of cell-cell adhesion is an important aspect of cell migration, axon guidance, and synapse formation. Here, we show that Endoglycan, a sialomucin, plays a role in axon guidance and cell migration in the central nervous system. In the absence of Endoglycan, commissural axons failed to properly navigate the midline of the spinal cord. In the developing cerebellum, a lack of Endoglycan prevented migration of Purkinje cells and resulted in a stunted growth of the cerebellar lobes. Taken together, these results support the hypothesis that Endoglycan acts as a ‘lubricant’, a negative regulator of cell-cell adhesion, in both commissural axon guidance and Purkinje cell migration.
PLOS ONE | 2018
Barbara Scherz; Roland Rabl; Stefanie Flunkert; Siegfried Rohler; Joerg Neddens; Nicole Taub; Magdalena Temmel; Ute Panzenboeck; Vera Niederkofler; Robert Zimmermann; Birgit Hutter-Paier
Transgenic mouse models are indispensable tools to mimic human diseases and analyze the effectiveness of related new drugs. For a long time amyotrophic lateral sclerosis (ALS) research depended on only a few mouse models that exhibit a very strong and early phenotype, e.g. SOD1 mice, resulting in a short treatment time window. By now, several models are available that need to be characterized to highlight characteristics of each model. Here we further characterized the mThy1-hTDP-43 transgenic mouse model TAR6/6 that overexpresses wild type human TARDBP, also called TDP-43, under control of the neuronal Thy-1 promoter presented by Wils and colleagues, 2010, by using biochemical, histological and behavioral readouts. Our results show that TAR6/6 mice exhibit a strong TDP-43 expression in the hippocampus, spinal cord, hypothalamus and medulla oblongata. Apart from prominent protein expression in the nucleus, TDP-43 protein was found at lower levels in the cytosol of transgenic mice. Additionally, we detected insoluble TDP-43 in the cortex, motoneuron loss, and increased neuroinflammation in the central nervous system of TAR6/6 animals. Behavioral analyses revealed early motor deficits in the clasping- and wire suspension test as well as decreased anxiety in the elevated plus maze. Further motor tests showed differences at later time points compared to non-transgenic littermates, thus allowing the observation of onset and severity of such deficits. Together, TAR6/6 mice are a valuable tool to test new ALS/FTLD drugs that target TDP-43 expression and insolubility, neuroinflammation, motoneuron loss or other TDP-43 related downstream signaling pathways since these mice exhibit a later pathology as previously used ALS/FTLD mouse models.
Alzheimers & Dementia | 2018
Roland Rabl; Meritxell Aguilo; Tina Loeffler; Joerg Neddens; Ainara Lopez-Pardo; Vera Niederkofler; Stefanie Flunkert; Birgit Hutter-Paier
amyloid beta(Ab) and protecting nerve cells. Furthermore, 6MSITC has been reported to be absorbed a high rate in the body, which is considered to be about from 40 to 60%. Other isothiocyanate, as an analog of 6-MSITC, has been reported to permeate the brain blad barrier. Therefore, 6-MSITC can be considered as an effective compound for brain function. Methods: The doubleblinded clinical study was conducted using 6-MSITC (25 placebo, 25 subjects, 8 weeks ingestion), and the rat pheochromocytoma cell line, PC12, were used to study the synergistic effects for the neurite outgrowth, dopamine secretion and Ab toxicity by 6-MSITC, DHA, curcumin, isorhamnetin. Results:Significant results were obtained by the clinical test. Furthermore, we found that 6-MSITC reduced the toxicity from Ab, increased secretion of dopamine on nerve cells. 6-MSITC also has synergistic effects of DHA, curcumin, and ginkgo biloba compound, which are considered to be good compounds for improvement of brain function. Conclusions: Thus, 6-MSITC may be used a compound to prevent Alzheimer’s disease.