Eszter Hegyi
Boston Children's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eszter Hegyi.
Digestive Diseases and Sciences | 2017
Eszter Hegyi; Miklós Sahin-Tóth
Abstract Genetic investigations have provided unique insight into the mechanism of chronic pancreatitis in humans and firmly established that uncontrolled trypsin activity is a central pathogenic factor. Mutations in the PRSS1, SPINK1, and CTRC genes promote increased activation of trypsinogen to trypsin by stimulation of autoactivation or by impairing protective trypsinogen degradation and/or trypsin inhibition. Here we review key genetic and biochemical features of the trypsin-dependent pathological pathway in chronic pancreatitis.
Pancreas | 2016
Eszter Hegyi; Andrea Geisz; Miklós Sahin-Tóth; Monique Derikx; Balázs Csaba Németh; Anita Balázs; István Hritz; Ferenc Izbéki; Adrienn Halász; Andrea Párniczky; Tamás Takács; Dezső Kelemen; Patrícia Sarlós; Péter Hegyi; László Czakó
Objectives Serine protease inhibitor Kazal type 1 (SPINK1) provides an important line of defense against premature trypsinogen activation within the pancreas. Our aim was to identify pathogenic SPINK1 promoter variants associated with chronic pancreatitis (CP). Methods One hundred CP patients (cases) and 100 controls with no pancreatic disease from the Hungarian National Pancreas Registry were enrolled. Direct sequencing of SPINK1 promoter region was performed. Functional characterization of variants was carried out using luciferase reporter gene assay. Results Two common polymorphisms (c.-253T>C and c.-807C>T) were found in both cases and controls. Variant c.253T>C was enriched in cases relative to controls (odds ratio, 2.1; 95% confidence interval, 1.2-3.8; P = 0.015). Variant c.-215G>A was detected in 3 of 100 cases; always linked with the pathogenic variant c.194+2T>C. Novel promoter variants c.-14G>A, c.-108G>T, and c.-246A>G were identified in 1 case each. Functional analysis showed decreased promoter activity for variants c.-14G>A (80%), c.-108G>T (31%), and c.-246A>G (47%) whereas activity of variant c.-215G>A was increased (201%) and variant c.-253T>C was unchanged compared with wild type. Conclusions The common promoter variant c.-253T>C was associated with CP in this cohort. Two of 3 newly identified SPINK1 promoter variants seem to exhibit significant functional defects and should be considered potential risk factors for CP.
Journal of Biological Chemistry | 2015
András Szabó; Maren Ludwig; Eszter Hegyi; Renata Szépeová; Heiko Witt; Miklós Sahin-Tóth
Background: Mutations in human chymotrypsin C (CTRC) compromise protective trypsinogen degradation and increase risk for pancreatitis. Results: CTRC variant p.G214R degraded trypsinogen poorly; was resistant to inhibitors; and cleaved their reactive sites. Conclusion: Pathogenic variant p.G214R is a functional paralog of mesotrypsin, an inhibitor-degrading trypsin isoform. Significance: The same mutation that evolved a new function in mesotrypsin causes pathology in the context of CTRC. Human chymotrypsin C (CTRC) protects against pancreatitis by degrading trypsinogen and thereby curtailing harmful intra-pancreatic trypsinogen activation. Loss-of-function mutations in CTRC increase the risk for chronic pancreatitis. Here we describe functional analysis of eight previously uncharacterized natural CTRC variants tested for potential defects in secretion, proteolytic stability, and catalytic activity. We found that all variants were secreted from transfected cells normally, and none suffered proteolytic degradation by trypsin. Five variants had normal enzymatic activity, whereas variant p.R29Q was catalytically inactive due to loss of activation by trypsin and variant p.S239C exhibited impaired activity possibly caused by disulfide mispairing. Surprisingly, variant p.G214R had increased activity on a small chromogenic peptide substrate but was markedly defective in cleaving bovine β-casein or the natural CTRC substrates human cationic trypsinogen and procarboxypeptidase A1. Mutation p.G214R is analogous to the evolutionary mutation in human mesotrypsin, which rendered this trypsin isoform resistant to proteinaceous inhibitors and conferred its ability to cleave these inhibitors. Similarly to the mesotrypsin phenotype, CTRC variant p.G214R was inhibited poorly by eglin C, ecotin, or a CTRC-specific variant of SGPI-2, and it readily cleaved the reactive-site peptide bonds in eglin C and ecotin. We conclude that CTRC variants p.R29Q, p.G214R, and p.S239C are risk factors for chronic pancreatitis. Furthermore, the mesotrypsin-like CTRC variant highlights how the same natural mutation in homologous pancreatic serine proteases can evolve a new physiological role or lead to pathology, determined by the biological context of protease function.
Gut | 2018
Jonas Rosendahl; Holger Kirsten; Eszter Hegyi; Peter Kovacs; Frank Ulrich Weiss; Helmut Laumen; Peter Lichtner; Claudia Ruffert; Jian-Min Chen; Emmanuelle Masson; Sebastian Beer; Constantin Zimmer; Katharina Seltsam; Hana Algül; Florence Bühler; Marco J. Bruno; Peter Bugert; Ralph Burkhardt; Giulia Martina Cavestro; Halina Cichoż-Lach; Antoni Farré; Josef Frank; Giovanni Gambaro; Sebastian Gimpfl; Harald Grallert; Heidi Griesmann; Robert Grützmann; Claus Hellerbrand; Péter Hegyi; Marcus Hollenbach
Objective Alcohol-related pancreatitis is associated with a disproportionately large number of hospitalisations among GI disorders. Despite its clinical importance, genetic susceptibility to alcoholic chronic pancreatitis (CP) is poorly characterised. To identify risk genes for alcoholic CP and to evaluate their relevance in non-alcoholic CP, we performed a genome-wide association study and functional characterisation of a new pancreatitis locus. Design 1959 European alcoholic CP patients and population-based controls from the KORA, LIFE and INCIPE studies (n=4708) as well as chronic alcoholics from the GESGA consortium (n=1332) were screened with Illumina technology. For replication, three European cohorts comprising 1650 patients with non-alcoholic CP and 6695 controls originating from the same countries were used. Results We replicated previously reported risk loci CLDN2-MORC4, CTRC, PRSS1-PRSS2 and SPINK1 in alcoholic CP patients. We identified CTRB1-CTRB2 (chymotrypsin B1 and B2) as a new risk locus with lead single-nucleotide polymorphism (SNP) rs8055167 (OR 1.35, 95% CI 1.23 to 1.6). We found that a 16.6 kb inversion in the CTRB1-CTRB2 locus was in linkage disequilibrium with the CP-associated SNPs and was best tagged by rs8048956. The association was replicated in three independent European non-alcoholic CP cohorts of 1650 patients and 6695 controls (OR 1.62, 95% CI 1.42 to 1.86). The inversion changes the expression ratio of the CTRB1 and CTRB2 isoforms and thereby affects protective trypsinogen degradation and ultimately pancreatitis risk. Conclusion An inversion in the CTRB1-CTRB2 locus modifies risk for alcoholic and non-alcoholic CP indicating that common pathomechanisms are involved in these inflammatory disorders.
American Journal of Physiology-gastrointestinal and Liver Physiology | 2017
Anna Zsófia Tóth; András Szabó; Eszter Hegyi; Péter Hegyi; Miklós Sahin-Tóth
Determination of fecal pancreatic elastase content by ELISA is a reliable, noninvasive clinical test for assessing exocrine pancreatic function. Despite the widespread use of commercial tests, their exact molecular targets remain poorly characterized. This study was undertaken to clarify which human pancreatic elastase isoforms are detected by the ScheBo Pancreatic Elastase 1 Stool Test and whether naturally occurring genetic variants influence the performance of this test. Using recombinantly expressed and purified human pancreatic proteinases, we found that the test specifically measured chymotrypsin-like elastases (CELA) 3A and 3B (CELA3A and CELA3B), while CELA2A was not detected. Inactive proelastases, active elastases, and autolyzed forms were detected with identical efficiency. CELA3B elicited approximately four times higher ELISA signal than CELA3A, and we identified Glu154 in CELA3B as the critical determinant of detection. Common genetic variants of CELA3A and CELA3B had no effect on test performance, with the exception of the CELA3B variant W79R, which increased detection by 1.4-fold. Finally, none of the human trypsin and chymotrypsin isoforms were detected. We conclude that the ScheBo Pancreatic Elastase 1 Stool Test is specific for human CELA3A and CELA3B, with most of the ELISA signal attributable to CELA3B.NEW & NOTEWORTHY The ScheBo Pancreatic Elastase 1 Stool Test is widely used to assess pancreatic exocrine function, yet its molecular targets have been poorly defined. We demonstrate that, among the human pancreatic proteinases, the test measures the elastase isoform CELA3B and, to a lesser extent, CELA3A. Genetic variants of the human CELA3 isoforms have no significant effect on test performance.
International Journal of Molecular Sciences | 2016
Andrea Párniczky; Eszter Hegyi; Anna Zsófia Tóth; Ákos Szücs; Andrea Szentesi; Áron Vincze; Ferenc Izbéki; Balázs Csaba Németh; Péter Hegyi; Miklós Sahin-Tóth
Human chymotrypsin-like elastases 3A and 3B (CELA3A and CELA3B) are the products of gene duplication and share 92% identity in their primary structure. CELA3B forms stable complexes with procarboxypeptidases A1 and A2 whereas CELA3A binds poorly due to the evolutionary substitution of Ala241 with Gly in exon 7. Since position 241 is polymorphic both in CELA3A (p.G241A) and CELA3B (p.A241G), genetic analysis can directly assess whether individual variability in complex formation might alter risk for chronic pancreatitis. Here we sequenced exon 7 of CELA3A and CELA3B in a cohort of 225 subjects with chronic pancreatitis (120 alcoholic and 105 non-alcoholic) and 300 controls of Hungarian origin. Allele frequencies were 2.5% for CELA3A p.G241A and 1.5% for CELA3B p.A241G in controls, and no significant difference was observed in patients. Additionally, we identified six synonymous variants, two missense variants, a gene conversion event and ten variants in the flanking intronic regions. Variant c.643-7G>T in CELA3B showed an association with alcoholic chronic pancreatitis with a small protective effect (OR = 0.59, 95% CI = 0.39–0.89, p = 0.01). Functional analysis of missense variants revealed no major defects in secretion or activity. We conclude that variants affecting amino-acid position 241 in CELA3A and CELA3B are not associated with chronic pancreatitis, indicating that changes in complex formation between proelastases and procarboxypeptidases do not alter pancreatitis risk.
Scientific Reports | 2018
Eszter Hegyi; Miklós Sahin-Tóth
The domestic ferret (Mustela putorius furo) recently emerged as a novel model for human pancreatic diseases. To investigate whether the ferret would be appropriate to study hereditary pancreatitis associated with increased trypsinogen autoactivation, we purified and cloned the trypsinogen isoforms from the ferret pancreas and studied their functional properties. We found two highly expressed isoforms, anionic and cationic trypsinogen. When compared to human cationic trypsinogen (PRSS1), ferret anionic trypsinogen autoactivated only in the presence of high calcium concentrations but not in millimolar calcium, which prevails in the secretory pathway. Ferret cationic trypsinogen was completely defective in autoactivation under all conditions tested. However, both isoforms were readily activated by enteropeptidase and cathepsin B. We conclude that ferret trypsinogens do not autoactivate as their human paralogs and cannot be used to model the effects of trypsinogen mutations associated with human hereditary pancreatitis. Intra-pancreatic trypsinogen activation by cathepsin B can occur in ferrets, which might trigger pancreatitis even in the absence of trypsinogen autoactivation.
Gut | 2018
Eszter Hegyi; Miklós Sahin-Tóth
Objective Chronic pancreatitis is a progressive, relapsing inflammatory disorder of the pancreas, which often develops in the background of genetic susceptibility. Recently, loss-of-function mutations in CPA1, which encodes the digestive enzyme carboxypeptidase A1, were described in sporadic early onset cases and in hereditary pancreatitis. Mutation-induced misfolding of CPA1 and associated endoplasmic reticulum (ER) stress was suggested as potential disease mechanism; however, in vivo evidence has been lacking. The objective of the present study was to create a mouse model that recapitulates features of CPA1-associated chronic pancreatitis. Design We knocked-in the most frequently occurring p.N256K human CPA1 mutation to the mouse Cpa1 locus. Mutant mice were characterised with respect to pancreas pathology and ER stress and compared with C57BL/6N and CPA1 null control mice. Results In the CPA1 N256K mutant mice, we observed hallmarks of chronic pancreatitis that included progressive acinar cell atrophy, inflammatory cell infiltration, fibrosis and acinar-ductal metaplasia. In contrast, similarly to the C57BL/6N mice, the CPA1 null control strain exhibited no signs of pancreatic disease. Mutation p.N256K induced misfolding of mouse CPA1 and resulted in elevated expression of ER stress markers Hspa5 (BiP) and Ddit3 (CHOP) both in cell culture and mutant mice. Conclusion The results offer categorical evidence that CPA1 mutations elicit enzyme misfolding and cause chronic pancreatitis via an ER stress-related mechanism.
Pancreas | 2016
Anita Balázs; Balázs Csaba Németh; Balázs Ördög; Eszter Hegyi; István Hritz; László Czakó; József Czimmer; Szilárd Gódi; Adrienn Csiszkó; Zoltán Rakonczay; Andrea Párniczky; Ferenc Izbéki; Adrienn Halász; Zsuzsanna Kahán; Péter Hegyi; Miklós Sahin-Tóth
Objectives Variant c.811+32C>A in intron 4 of the cholecystokinin-B receptor gene (CCKBR) was reported to correlate with higher pancreatic cancer risk and poorer survival. The variant was suggested to induce retention of intron 4, resulting in a new splice form with enhanced receptor activity. Our objective was to validate the c.811+32C>A variant as an emerging biomarker for pancreatic cancer risk and prognosis. Methods We genotyped variant c.811+32C>A in 122 pancreatic adenocarcinoma case patients and 106 control subjects by sequencing and examined its association with cancer risk and patient survival. We tested the functional effect of variant c.811+32C>A on pre–messenger RNA splicing in human embryonic kidney 293T and Capan-1 cells transfected with CCKBR minigenes. Results The allele frequency of the variant was similar between patients and control subjects (18.4% and 17.9%, respectively). Survival analysis showed no significant difference between median survival of patients with the C/C genotype (266 days) and patients with the A/C or A/A genotypes (257 days). CCKBR minigenes with or without variant c.811+32C>A exhibited no difference in expression of the intron-retaining splice variant. Conclusion These data indicate that variant c.811+32C>A in CCKBR does not have a significant impact on pancreatic cancer risk or survival in a Hungarian cohort.
Journal of the Pancreas | 2014
Eszter Hegyi; Iveta Čierna; Ludmila Vavrova; Denisa Ilencikova; Michal Konecny; Laszlo Kovacs
CONTEXT The major etiologic factor of chronic pancreatitis in adults is excessive alcohol consumption, whereas among children structural anomalies, systemic and metabolic disorders, and genetic factors are prevalent. Mutations in the cationic trypsinogen gene (PRSS1) cause hereditary pancreatitis, while mutations in serine protease inhibitor Kazal type 1 (SPINK1), cystic fibrosis transmembrane conductance regulator (CFTR) and chymotrypsin C (CTRC) genes have been shown to associate with chronic pancreatitis as independent risk factors. CASE REPORT We present a case of 13-year-old boy with idiopathic chronic pancreatitis. Given the unexplained attacks of pancreatitis since early childhood and despite the negative family history, molecular-genetic analysis of four pancreatitis susceptibility genes (PRSS1, SPINK1, CTRC and CFTR) was performed. The boy was found to carry the c.623G>C (p.G208A) mutation of the PRSS1 gene and the c.180C>T (p.G60G) mutation of the CTRC gene, both in heterozygous state. These mutations are considered as contributing risk factors for chronic pancreatitis. CONCLUSIONS In children with idiopathic chronic pancreatitis genetic causes should be considered, even in absence of positive family history. To the best of our knowledge, this is the first description of a European patient with chronic pancreatitis associated with the p.G208A mutation of PRSS1 gene. This mutation was previously reported only in Asian subjects and is thought to be a unique genetic cause of pancreatitis in Asia.