Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miklós Sahin-Tóth is active.

Publication


Featured researches published by Miklós Sahin-Tóth.


The FASEB Journal | 1998

Cys-scanning mutagenesis: a novel approach to structure–function relationships in polytopic membrane proteins

Stathis Frillingos; Miklós Sahin-Tóth; Jianhua Wu; H. Ronald Kaback

The entire lactose permease of Escherichia coli, a polytopic membrane transport protein that catalyzes β‐galactoside/H+ symport, has been subjected to Cys‐scanning mutagenesis in order to determine which residues play an obligatory role in the mechanism and to create a library of mutants with a single‐Cys residue at each position of the molecule for structure/function studies. Analysis of the mutants has led to the following: 1) only six amino acid side chains play an irreplaceable role in the transport mechanism; 2) positions where the reactivity of the Cys replacement is increased upon ligand binding are identified; 3) positions where the reactivity of the Cys replacement is decreased by ligand binding are identified; 4) helix packing, helix tilt, and ligand‐induced conformational changes are determined by using the library of mutants in conjunction with a battery of site‐directed techniques; 5) the permease is a highly flexible molecule; and 6) a working model that explains coupling between β‐galactoside and H+ translocation. — Frillingos, S., Sahin‐To´ th, M., Wu, J., Kabac, H. R. Cys‐scanning mutagenesis: a novel approach to structure‐function relationships in polytopic membrane proteins. FASEB J. 12, 1281–1299 (1998)


Nature Genetics | 2008

Chymotrypsin C (CTRC) variants that diminish activity or secretion are associated with chronic pancreatitis.

Jonas Rosendahl; Heiko Witt; Richárd Szmola; Eesh Bhatia; Béla Ózsvári; Olfert Landt; Hans Ulrich Schulz; Thomas M. Gress; Roland H. Pfützer; Matthias Löhr; Peter Kovacs; Matthias Blüher; Michael Stumvoll; Gourdas Choudhuri; Péter Hegyi; Rene H. M. te Morsche; Joost P. H. Drenth; Kaspar Truninger; Milan Macek; Gero Puhl; Ulrike Witt; Hartmut Schmidt; Carsten Büning; Johann Ockenga; Andreas Kage; David A. Groneberg; Renate Nickel; Thomas Berg; Bertram Wiedenmann; Hans Bödeker

Chronic pancreatitis is a persistent inflammatory disease of the pancreas, in which the digestive protease trypsin has a fundamental pathogenetic role. Here we have analyzed the gene encoding the trypsin-degrading enzyme chymotrypsin C (CTRC) in German subjects with idiopathic or hereditary chronic pancreatitis. Two alterations in this gene, p.R254W and p.K247_R254del, were significantly overrepresented in the pancreatitis group, being present in 30 of 901 (3.3%) affected individuals but only 21 of 2,804 (0.7%) controls (odds ratio (OR) = 4.6; confidence interval (CI) = 2.6–8.0; P = 1.3 × 10−7). A replication study identified these two variants in 10 of 348 (2.9%) individuals with alcoholic chronic pancreatitis but only 3 of 432 (0.7%) subjects with alcoholic liver disease (OR = 4.2; CI = 1.2–15.5; P = 0.02). CTRC variants were also found in 10 of 71 (14.1%) Indian subjects with tropical pancreatitis but only 1 of 84 (1.2%) healthy controls (OR = 13.6; CI = 1.7–109.2; P = 0.0028). Functional analysis of the CTRC variants showed impaired activity and/or reduced secretion. The results indicate that loss-of-function alterations in CTRC predispose to pancreatitis by diminishing its protective trypsin-degrading activity.


Nature Reviews Molecular Cell Biology | 2001

The kamikaze approach to membrane transport

H. Ronald Kaback; Miklós Sahin-Tóth; Adam B. Weinglass

Membrane transport proteins catalyse the movement of molecules into and out of cells and organelles, but their hydrophobic and metastable nature often makes them difficult to study by traditional means. Novel approaches that have been developed and applied to one membrane transport protein, the lactose permease from Escherichia coli, are now being used to study various other membrane proteins.


Nature Genetics | 2006

A degradation-sensitive anionic trypsinogen (PRSS2) variant protects against chronic pancreatitis

Heiko Witt; Miklós Sahin-Tóth; Olfert Landt; Jian-Min Chen; Thilo Kähne; Joost P. H. Drenth; Zoltán Kukor; Edit Szepessy; Walter Halangk; Stefan Dahm; Klaus Rohde; Hans Ulrich Schulz; Cédric Le Maréchal; Nejat Akar; Rudolf W. Ammann; Kaspar Truninger; Mario Bargetzi; Eesh Bhatia; Carlo Castellani; Giulia Martina Cavestro; Milos Cerny; Giovanni Destro-Bisol; Gabriella Spedini; Jan B.M.J. Jansen; Monika Koudova; Eva Rausova; Milan Macek; Núria Malats; Francisco X. Real; Hans Jürgen Menzel

Chronic pancreatitis is a common inflammatory disease of the pancreas. Mutations in the genes encoding cationic trypsinogen (PRSS1) and the pancreatic secretory trypsin inhibitor (SPINK1) are associated with chronic pancreatitis. Because increased proteolytic activity owing to mutated PRSS1 enhances the risk for chronic pancreatitis, mutations in the gene encoding anionic trypsinogen (PRSS2) may also predispose to disease. Here we analyzed PRSS2 in individuals with chronic pancreatitis and controls and found, to our surprise, that a variant of codon 191 (G191R) is overrepresented in control subjects: G191R was present in 220/6,459 (3.4%) controls but in only 32/2,466 (1.3%) affected individuals (odds ratio 0.37; P = 1.1 × 10−8). Upon activation by enterokinase or trypsin, purified recombinant G191R protein showed a complete loss of trypsin activity owing to the introduction of a new tryptic cleavage site that renders the enzyme hypersensitive to autocatalytic proteolysis. In conclusion, the G191R variant of PRSS2 mitigates intrapancreatic trypsin activity and thereby protects against chronic pancreatitis.


Journal of Biological Chemistry | 2000

Human Cationic Trypsinogen ROLE OF Asn-21 IN ZYMOGEN ACTIVATION AND IMPLICATIONS IN HEREDITARY PANCREATITIS

Miklós Sahin-Tóth

Mutation Asn-21 → Ile in human cationic trypsinogen (Tg-1) has been associated with hereditary pancreatitis. Recent studies with rat anionic Tg (Tg-2) indicated that the analogous Thr-21 → Ile mutation stabilizes the zymogen against autoactivation, whereas it has no effect on catalytic properties or autolytic stability of trypsin (Sahin-Tóth, M. (1999) J. Biol. Chem.274, 29699–29704). In the present paper, human cationic Tg (Asn-21-Tg) and mutants Asn-21 → Ile (Ile-21-Tg) and Asn-21 → Thr (Thr-21-Tg) were expressed in Escherichia coli, and zymogen activation, zymogen degradation, and trypsin autolysis were studied. Enterokinase activated Asn-21-Tg approximately 2-fold better than Ile-21-Tg or Thr-21-Tg, and catalytic parameters of trypsins were comparable. At 37 °C, in 5 mm Ca2+, all three trypsins were highly stable. In the absence of Ca2+, Asn-21- and Ile-21-trypsins suffered autolysis in an indistinguishable manner, whereas Thr-21-trypsin exhibited significantly increased stability. In sharp contrast to observations with the rat proenzyme, at pH 8.0, 37 °C, autoactivation kinetics of Asn-21-Tg and Ile-21-Tg were identical; however, at pH 5.0, Ile-21-Tg autoactivated at an enhanced rate relative to Asn-21-Tg. Remarkably, at both pH values, Thr-21-Tg showed markedly higher autoactivation rates than the two other zymogens. Finally, autocatalytic proteolysis of human zymogens was limited to cleavage at Arg-117, and no digestion at Lys-188 was detected. The observations indicate that zymogen stabilization by Ile-21 as observed in rat Tg-2 is not characteristic of human Tg-1. Instead, an increased propensity to autoactivation under acidic conditions might be relevant to the pathomechanism of the Asn-21 → Ile mutation in hereditary pancreatitis. In the same context, faster autoactivation and increased trypsin stability caused by the Asn-21 → Thr mutation in human Tg-1 might provide a rationale for the evolutionary divergence from Thr-21 found in other mammalian trypsinogens.


Journal of Biological Chemistry | 2002

Hereditary Pancreatitis Caused by a Novel PRSS1 Mutation (Arg-122 → Cys) That Alters Autoactivation and Autodegradation of Cationic Trypsinogen

Peter Simon; F. Ulrich Weiss; Miklós Sahin-Tóth; Marina Parry; Oliver Nayler; Berthold Lenfers; Jürgen Schnekenburger; Julia Mayerle; Wolfram Domschke; Markus M. Lerch

Hereditary pancreatitis has been found to be associated with germline mutations in the cationic trypsinogen (PRSS1) gene. Here we report a family with hereditary pancreatitis that carries a novel PRSS1 mutation (R122C). This mutation cannot be diagnosed with the conventional screening method using AflIII restriction enzyme digest. We therefore propose a new assay based on restriction enzyme digest with BstUI, a technique that permits detection of the novel R122C mutation in addition to the most common R122H mutation, and even in the presence of a recently reported neutral polymorphism that prevents its detection by the AflIII method. Recombinantly expressed R122C mutant human trypsinogen was found to undergo greatly reduced autoactivation and cathepsin B-induced activation, which is most likely caused by misfolding or disulfide mismatches of the mutant zymogen. The K m of R122C trypsin was found to be unchanged, but its k catwas reduced to 37% of the wild type. After correction for enterokinase activatable activity, and specifically in the absence of calcium, the R122C mutant was more resistant to autolysis than the wild type and autoactivated more rapidly at pH 8. Molecular modeling of the R122C mutant trypsin predicted an unimpaired active site but an altered stability of the calcium binding loop. This previously unknown trypsinogen mutation is associated with hereditary pancreatitis, requires a novel diagnostic screening method, and, for the first time, raises the question whether a gain or a loss of trypsin function participates in the onset of pancreatitis.


Nature Genetics | 2013

Variants in CPA1 are strongly associated with early onset chronic pancreatitis

Heiko Witt; Sebastian Beer; Jonas Rosendahl; Jian-Min Chen; Giriraj R. Chandak; Atsushi Masamune; Melinda Bence; Richárd Szmola; Grzegorz Oracz; Milan Macek; Eesh Bhatia; Sandra Steigenberger; Denise Lasher; Florence Bühler; Catherine Delaporte; Johanna Tebbing; Maren Ludwig; Claudia Pilsak; Karolin Saum; Peter Bugert; Emmanuelle Masson; Sumit Paliwal; Seema Bhaskar; Agnieszka Sobczynska-Tomaszewska; Daniel Bak; Ivan Balascak; Gourdas Choudhuri; D. Nageshwar Reddy; G. Venkat Rao; Varghese Thomas

Chronic pancreatitis is an inflammatory disorder of the pancreas. We analyzed CPA1, encoding carboxypeptidase A1, in subjects with nonalcoholic chronic pancreatitis (cases) and controls in a German discovery set and three replication sets. Functionally impaired variants were present in 29/944 (3.1%) German cases and 5/3,938 (0.1%) controls (odds ratio (OR) = 24.9, P = 1.5 × 10−16). The association was strongest in subjects aged ≤10 years (9.7%; OR = 84.0, P = 4.1 × 10−24). In the replication sets, defective CPA1 variants were present in 8/600 (1.3%) cases and 9/2,432 (0.4%) controls from Europe (P = 0.01), 5/230 (2.2%) cases and 0/264 controls from India (P = 0.02) and 5/247 (2.0%) cases and 0/341 controls from Japan (P = 0.013). The mechanism by which CPA1 variants confer increased pancreatitis risk may involve misfolding-induced endoplasmic reticulum stress rather than elevated trypsin activity, as is seen with other genetic risk factors for this disease.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Chymotrypsin C (caldecrin) promotes degradation of human cationic trypsin: Identity with Rinderknecht's enzyme Y

Richárd Szmola; Miklós Sahin-Tóth

Digestive trypsins undergo proteolytic breakdown during their transit in the human alimentary tract, which has been assumed to occur through trypsin-mediated cleavages, termed autolysis. Autolysis was also postulated to play a protective role against pancreatitis by eliminating prematurely activated intrapancreatic trypsin. However, autolysis of human cationic trypsin is very slow in vitro, which is inconsistent with the documented intestinal trypsin degradation or a putative protective role. Here we report that degradation of human cationic trypsin is triggered by chymotrypsin C, which selectively cleaves the Leu81-Glu82 peptide bond within the Ca2+ binding loop. Further degradation and inactivation of cationic trypsin is then achieved through tryptic cleavage of the Arg122-Val123 peptide bond. Consequently, mutation of either Leu81 or Arg122 blocks chymotrypsin C-mediated trypsin degradation. Calcium affords protection against chymotrypsin C-mediated cleavage, with complete stabilization observed at 1 mM concentration. Chymotrypsin C is highly specific in promoting trypsin degradation, because chymotrypsin B1, chymotrypsin B2, elastase 2A, elastase 3A, or elastase 3B are ineffective. Chymotrypsin C also rapidly degrades all three human trypsinogen isoforms and appears identical to enzyme Y, the enigmatic trypsinogen-degrading activity described by Heinrich Rinderknecht in 1988. Taken together with previous observations, the results identify chymotrypsin C as a key regulator of activation and degradation of cationic trypsin. Thus, in the high Ca2+ environment of the duodenum, chymotrypsin C facilitates trypsinogen activation, whereas in the lower intestines, chymotrypsin C promotes trypsin degradation as a function of decreasing luminal Ca2+ concentrations.


The American Journal of Gastroenterology | 2010

Autoantibodies against the exocrine pancreas in autoimmune pancreatitis: gene and protein expression profiling and immunoassays identify pancreatic enzymes as a major target of the inflammatory process

J.-Matthias Löhr; Ralf Faissner; Dirk Koczan; Peter Bewerunge; Claudio Bassi; Benedikt Brors; Roland Eils; Luca Frulloni; Anette Funk; Walter Halangk; Ralf Jesnowski; Lars Kaderali; Jörg Kleeff; Burkhard Krüger; Markus M. Lerch; Ralf Lösel; Mauro Magnani; Michael Neumaier; Stephanie Nittka; Miklós Sahin-Tóth; Julian Sänger; Sonja Serafini; Martina Schnölzer; Hermann Josef Thierse; Silke Wandschneider; Giuseppe Zamboni; Günter Klöppel

OBJECTIVES:Autoimmune pancreatitis (AIP) is thought to be an immune-mediated inflammatory process, directed against the epithelial components of the pancreas. The objective was to identify novel markers of disease and to unravel the pathogenesis of AIP.METHODS:To explore key targets of the inflammatory process, we analyzed the expression of proteins at the RNA and protein level using genomics and proteomics, immunohistochemistry, western blot, and immunoassay. An animal model of AIP with LP-BM5 murine leukemia virus-infected mice was studied in parallel. RNA microarrays of pancreatic tissue from 12 patients with AIP were compared with those of 8 patients with non-AIP chronic pancreatitis.RESULTS:Expression profiling showed 272 upregulated genes, including those encoding for immunoglobulins, chemokines and their receptors, and 86 downregulated genes, including those for pancreatic proteases such as three trypsinogen isoforms. Protein profiling showed that the expression of trypsinogens and other pancreatic enzymes was greatly reduced. Immunohistochemistry showed a near-loss of trypsin-positive acinar cells, which was also confirmed by western blotting. The serum of AIP patients contained high titers of autoantibodies against the trypsinogens PRSS1 and PRSS2 but not against PRSS3. In addition, there were autoantibodies against the trypsin inhibitor PSTI (the product of the SPINK1 gene). In the pancreas of AIP animals, we found similar protein patterns and a reduction in trypsinogen.CONCLUSIONS:These data indicate that the immune-mediated process characterizing AIP involves pancreatic acinar cells and their secretory enzymes such as trypsin isoforms. Demonstration of trypsinogen autoantibodies may be helpful for the diagnosis of AIP.


Human Mutation | 2009

Hereditary pancreatitis caused by mutation induced misfolding of human cationic trypsinogen - a novel disease mechanism

Éva Kereszturi; Richárd Szmola; Zoltán Kukor; Peter Simon; Frank Ulrich Weiss; Markus M. Lerch; Miklós Sahin-Tóth

We investigated the biochemical properties and cellular expression of the c.346C>T (p.R116C) human cationic trypsinogen (PRSS1) mutant, which we identified in a German family with autosomal dominant hereditary pancreatitis. This mutation leads to an unpaired Cys residue with the potential to interfere with protein folding via incorrect disulfide bond formation. Recombinantly expressed p.R116C trypsinogen exhibited a tendency for misfolding in vitro. Biochemical analysis of the correctly folded, purified p.R116C mutant revealed unchanged activation and degradation characteristics compared to wild type trypsinogen. Secretion of mutant p.R116C from transfected 293T cells was reduced to ∼20% of wild type. A similar secretion defect was observed with another rare PRSS1 variant, p.C139S, whereas mutants p.A16V, p.N29I, p.N29T, p.E79K, p.R122C, and p.R122H were secreted normally. All mutants were detected in cell extracts at comparable levels but a large portion of mutant p.R116C was present in an insoluble, protease‐sensitive form. Consistent with intracellular retention of misfolded trypsinogen, the endoplasmic reticulum (ER) stress markers immunoglobulin‐binding protein (BiP) and the spliced form of the X‐box binding protein‐1 (XBP1s) were elevated in cells expressing mutant p.R116C. The results indicate that mutation‐induced misfolding and intracellular retention of human cationic trypsinogen causes hereditary pancreatitis in carriers of the p.R116C mutation. ER stress triggered by trypsinogen misfolding represents a new potential disease mechanism for chronic pancreatitis. Hum Mutat 0, 1–8, 2009.

Collaboration


Dive into the Miklós Sahin-Tóth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Párniczky

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Eszter Hegyi

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge