Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eszter Szabados is active.

Publication


Featured researches published by Eszter Szabados.


Clinical Hemorheology and Microcirculation | 2012

Cardioprotection by resveratrol: A human clinical trial in patients with stable coronary artery disease

K. Magyar; Robert Halmosi; Anita Pálfi; Gergely Feher; Laszlo Czopf; A. Fulop; I. Battyany; Balazs Sumegi; Kalman Toth; Eszter Szabados

Several beneficial effects of resveratrol (RES), a natural antioxidant present in red wine have already been described. The aim of our study was to investigate if RES had a clinically measurable cardioprotective effect in patients after myocardial infarction. In this double-blind, placebo controlled trial 40 post-infarction Caucasian patients were randomized into two groups. One group received 10 mg RES capsule daily for 3 months. Systolic and diastolic left ventricular function, flow-mediated vasodilation (FMD), several laboratory and hemorheological parameters were measured before and after the treatment. Left ventricular ejection fraction showed an increasing tendency (ns) by RES treatment. However, left ventricular diastolic function was improved significantly (p < 0.01) by RES. A significant improvement in endothelial function measured by FMD was also observed (p < 0.05). Low-density lipoprotein (LDL) level significantly decreased (p < 0.05) in the RES treated group. Red blood cell deformability decreased and platelet aggregation increased significantly in the placebo group (p < 0.05), while resveratrol treatment has prevented these unfavourable changes. Concerning other measured parameters no significant changes were observed neither in placebo nor in RES group. Our results show that resveratrol improved left ventricle diastolic function, endothelial function, lowered LDL-cholesterol level and protected against unfavourable hemorheological changes measured in patients with coronary artery disease (CAD).


Biochemical Pharmacology | 2000

BGP-15, a nicotinic amidoxime derivate protecting heart from ischemia reperfusion injury through modulation of poly(ADP-ribose) polymerase.

Eszter Szabados; Peter Literati-Nagy; Beatrix Farkas; Balazs Sumegi

The protective effect of O-(3-piperidino-2-hydroxy-1-propyl)nicotinic amidoxime (BGP-15) against ischemia-reperfusion-induced injury was studied in the Langendorff heart perfusion system. To understand the molecular mechanism of the cardioprotection, the effect of BGP-15 on ischemic-reperfusion-induced reactive oxygen species (ROS) formation, lipid peroxidation single-strand DNA break formation, NAD(+) catabolism, and endogenous ADP-ribosylation reactions were investigated. These studies showed that BGP-15 significantly decreased leakage of lactate dehydrogenase, creatine kinase, and aspartate aminotransferase in reperfused hearts, and reduced the rate of NAD(+) catabolism. In addition, BGP-15 dramatically decreased the ischemia-reperfusion-induced self-ADP-ribosylation of nuclear poly(ADP-ribose) polymerase(PARP) and the mono-ADP-ribosylation of an endoplasmic reticulum chaperone GRP78. These data raise the possibility that BGP-15 may have a direct inhibitory effect on PARP. This hypothesis was tested on isolated enzyme, and kinetic analysis showed a mixed-type (noncompetitive) inhibition with a K(i) = 57 +/- 6 microM. Furthermore, BGP-15 decreased levels of ROS, lipid peroxidation, and single-strand DNA breaks in reperfused hearts. These data suggest that PARP may be an important molecular target of BGP-15 and that BGP-15 decreases ROS levels and cell injury during ischemia-reperfusion in the heart by inhibiting PARP activity.


Cardiovascular Research | 2009

PARP inhibition delays transition of hypertensive cardiopathy to heart failure in spontaneously hypertensive rats

Eva Bartha; Izabella Solti; László Kereskai; János Lantos; Eniko Plozer; Klara Magyar; Eszter Szabados; Tamás Kálai; Kálmán Hideg; Robert Halmosi; Balazs Sumegi; Kalman Toth

AIMS Oxidative stress followed by abnormal signalling can play a critical role in the development of long-term, high blood pressure-induced cardiac remodelling in heart failure (HF). Since oxidative stress-induced poly(ADP-ribose)polymerase (PARP) activation and cell death have been observed in several experimental models, we investigated the possibility that inhibition of nuclear PARP improves cardiac performance and delays transition from hypertensive cardiopathy to HF in a spontaneously hypertensive rat (SHR) model of HF. METHODS AND RESULTS SHRs were divided into two groups: one received no treatment (SHR-C) and the other (SHR-L) received 5 mg/kg/day L-2286 (PARP-inhibitor) orally for 46 weeks. A third group was a normotensive age-matched control group (CFY) and a fourth was a normotensive age-matched group receiving L-2286 treatment 5 mg/kg/day (CFY+L). At the beginning of the study, systolic function was similar in both CFY and SHR groups. In the SHR-C group at the end of the study, eccentric hypertrophy with poor left ventricular (LV) systolic function was observed, while PARP inhibitor treatment preserved systolic LV function. Due to these favourable changes, the survival rate of SHRs was significantly improved (P < 0.01) by the administration of the PARP inhibitor (L-2286). The PARP inhibitor used did not affect the elevated blood pressure of SHR rats, but moderated the level of plasma-BNP (P < 0.01) and favourably influenced all the measured gravimetric parameters (P < 0.05) and the extent of myocardial fibrosis (P < 0.05). The inhibition of PARP increased the phosporylation of Akt-1/GSK-3beta (P < 0.01), ERK 1/2 (P < 0.01), and PKC epsilon (P < 0.01), and decreased the phosphorylation of JNK (P < 0.05), p-38 MAPK (P < 0.01), PKC pan betaII and PKC zeta/lambda (P < 0.01), and PKC alpha/betaII and delta (P < 0.05). CONCLUSION These data demonstrate that chronic inhibition of PARP induces long-term favourable changes in the most important signalling pathways related to oxidative stress. PARP inhibition also prevents remodelling, preserves systolic function, and delays transition of hypertensive cardiopathy to HF in SHRs.


Free Radical Biology and Medicine | 1999

Enhanced ADP-ribosylation and its diminution by lipoamide after ischemia-reperfusion in perfused rat heart

Eszter Szabados; Gabor M. Fischer; Ferenc Gallyas; Gyula Kispal; Balazs Sumegi

Poly-ADP-ribose polymerase (PARP) is considered to play an important role in oxidative cell damage. We assumed that ischemia-reperfusion resulting from the increasing reactive oxygen species (ROS) can lead to the activation of endogenous mono- and poly-ADP-ribosylation reactions and that the reduction of ROS level by lipoamide, a less known antioxidant, can reverse these unfavorable processes. Experiments were performed on isolated Langendorff hearts subjected to 60-min ischemia followed by reperfusion. ROS, malondialdehyde, deoxyribonucleic acid (DNA) breaks, and NAD+ content were assayed in the hearts, and the ADP-ribosylation of cytoplasmic and nuclear proteins were determined by Western blot assay. Ischemia-reperfusion caused a moderate (30.2 +/- 8%) increase in ROS production determined by the dihydrorhodamine 123 method and significantly increased the malondialdehyde production (from < 1 to 23 +/- 2.7 nmol/ml), DNA damage (undamaged DNA decreased from 71 +/- 7% to 23.1 +/- 5%), and NAD+ catabolism. In addition, ischemia-reperfusion activated the mono-ADP-ribosylation of GRP78 and the self-ADP-ribosylation of the nuclear PARP. The perfusion of hearts with lipoamide significantly decreased the ischemia-reperfusion-induced cell membrane damage determined by enzyme release (LDH, CK, and GOT), decreased the ROS production, reduced the malondialdehyde production to 5.5 +/- 2.4 nmol/ml, abolished DNA damage, and reduced NAD+ catabolism. The ischemia-reperfusion-induced activation of poly- and mono-ADP-ribosylation reactions were also reverted by lipoamide. In isolated rat heart mitochondria, dihydrolipoamide was found to be a better antioxidant than dihydrolipoic acid. Ischemia-reperfusion by ROS overproduction and increasing DNA breaks activates PARP leading to accelerated NAD+ catabolism, impaired energy metabolism, and cell damage. Lipoamide by reducing ROS levels halts PARP activation and membrane damage and improves the recovery of postischemic myocardium.


Cardiovascular Research | 2001

The effect of carvedilol on enhanced ADP-ribosylation and red blood cell membrane damage caused by free radicals.

Tamas Habon; Eszter Szabados; Gabor Kesmarky; Robert Halmosi; Tibor Past; Balazs Sumegi; Kalman Toth

OBJECTIVE Previous studies have reported that the beta and alpha adrenoceptor blocker carvedilol has unique protective effects on free radical-induced myocardial injury. The aim of this study was to examine how carvedilol regulates reactive-oxygen-species-mediated signaling and decreases red blood cell membrane damage in heart perfusion and in a rheological model. METHODS The ischemia-reperfusion-induced oxidative cell damage, and changes in the intracellular signaling mediated by reactive oxygen species and peroxynitrite were studied on rat hearts in a Langendorff perfusion system (n=15). The effect of carvedilol on red blood cell suspension viscosity (hematocrit: 60%) incubated with free radical generator (phenazine methosulphate) was also investigated (n=10). The measurements were performed on a capillary viscosimeter. RESULTS In both studies a protective effect of carvedilol was found, as the decrease of red blood cell suspension viscosity and K(+) concentration in the supernatant indicated. Carvedilol significantly decreased the ischemia-reperfusion-induced free radical production and the NAD(+) catabolism and reversed the poly- and mono(ADP-ribosyl)ation. Carvedilol also decreased the lipid peroxidation and membrane damages as determined by free malondialdehyde production and the release of intracellular enzymes. The self ADP-ribosylation of isolated poly(ADP-ribose) polymerase was also significantly inhibited by carvedilol. CONCLUSION Our results show that carvedilol can modulate the reactive-oxygen-species-induced signaling through poly- and mono(ADP-ribosyl)ation reactions, the NAD(+) catabolism in postischemic perfused hearts and has a marked scavenger effect on free radical generator-induced red blood cell membrane damage. All these findings may play an important role in the beneficial effects of carvedilol treatment in different cardiovascular diseases.


Journal of Cardiovascular Pharmacology | 2011

Regulation of kinase cascade activation and heat shock protein expression by poly(ADP-ribose) polymerase inhibition in doxorubicin-induced heart failure.

Eva Bartha; Izabella Solti; Aliz Szabo; Gabor Olah; Klara Magyar; Eszter Szabados; Tamás Kálai; Kálmán Hideg; Kalman Toth; Domokos Gero; Csaba Szabó; Balazs Sumegi; Robert Halmosi

Cardiomyopathy is one of the most severe side effects of the chemotherapeutic agent doxorubicin (DOX). The formation of reactive oxygen species plays a critical role in the development of cardiomyopathies, and the pathophysiological cascade activates nuclear enzyme poly(ADP-ribose) polymerase (PARP), and kinase pathways. We characterized the effects of the PARP-inhibitor and kinase-modulator compound L-2286 in DOX-induced cardiac injury models. We studied the effect of the established superoxide dismutase–mimic Tempol and compared the effects of this agent with those of the PARP inhibitor. In the rat H9C2 cardiomyocytes, in which DOX-induced poly(ADP-ribosyl)ation, L-2286 protected them from the DOX-induced injury in a concentration-dependent manner. In the in vivo studies, mice were pretreated (for 1 week) with L-2286 or Tempol before the DOX treatment. Both the agents improved the activation of cytoprotective kinases, Akt, phospho-specific protein kinase C ϵ, ζ/λ and suppressed the activity of cell death promoting kinases glycogen synthase kinase-3β, JNK, and p38 mitogen-activated protein kinase, but the effect of PARP inhibitor was more pronounced and improved the survival as well. L-2286 activated the phosphorylation of proapoptotic transcription factor FKHR1 and promoted the expression of Hsp72 and Hsp90. These data suggest that the mode of the cytoprotective action of the PARP inhibitor may include the modulation of kinase pathways and heat shock protein expression.


PLOS ONE | 2014

Effects of Moderate Aerobic Exercise Training on Hemorheological and Laboratory Parameters in Ischemic Heart Disease Patients

Barbara Sandor; Alexandra Nagy; Andras Toth; Miklos Rabai; Béla Mezey; Árpád Csathó; Istvan Czuriga; Kalman Toth; Eszter Szabados

Background and Design In this study we set out to determine the effects of long-term physical training on hemorheological, laboratory parameters, exercise tolerability, psychological factors in cardiac patients participating in an ambulatory rehabilitation program. Methods Before physical training, patients were examined by echocardiography, tested on treadmill by the Bruce protocol, and blood was drawn for laboratory tests. The enrolled 79 ischemic heart disease patients joined a 24-week cardiac rehabilitation training program. Blood was drawn to measure hematocrit (Hct), plasma and whole blood viscosity (PV, WBV), red blood cell (RBC) aggregation and deformability. Hemorheological, clinical chemistry and psychological measurements were repeated 12 and 24 weeks later, and a treadmill test was performed at the end of the program. Results After 12 weeks Hct, PV, WBV and RBC aggregation were significantly decreased, RBC deformability exhibited a significant increase (p<0.05). Laboratory parameters (triglyceride, uric acid, hsCRP and fibrinogen) were significantly decreased (p<0.05). After 24 weeks the significant results were still observed. By the end of the study, IL-6 and TNF-α levels displayed decreasing trends (p<0.06). There was a significant improvement in MET (p<0.001), and the BMI decrease was also significant (p<0.05). The vital exhaustion parameters measured on the fatigue impact scale indicated a significant improvement in two areas of the daily activities (p<0.05). Conclusions Regular physical training improved the exercise tolerability of patients with ischemic heart disease. Previous publications have demonstrated that decreases in Hct and PV may reduce cardiovascular risk, while a decrease in RBC aggregation and an increase in deformability improve the capillary flow. Positive changes in laboratory parameters and body weight may indicate better oxidative and inflammatory circumstances and an improved metabolic state. The psychological findings point to an improvement in the quality of life.


Heart & Lung | 2011

Use of octreotide in the treatment of chylopericardium

Eszter Szabados; Kalman Toth; Emese Mezosi

Chylopericardium involves the pericardial effusion of chyle, which can be a primary (idiopathic) or secondary condition to injury or obstruction of the thoracic duct. We present a case of isolated chylopericardium that appeared after coronary artery bypass grafting in a 46-year-old woman. After failure of the usual conservative therapy for chylopericardium, ie, pericardial drainage and a low-fat, medium-chain triglyceride diet, her treatment was completed with octreotide, a long-acting somatostatin analog. Octreotide was used subcutaneously at a 3 × 100 μg daily dose for 2 weeks. The production of pericardial fluid decreased gradually, and had normalized by the end of treatment. No side effects were evident during therapy.


PLOS ONE | 2017

Doxycycline protects against ROS-induced mitochondrial fragmentation and ISO-induced heart failure

Adam Riba; Laszlo Deres; Krisztian Eros; Aliz Szabo; Klara Magyar; Balazs Sumegi; Kalman Toth; Robert Halmosi; Eszter Szabados

In addition to their anti-bacterial action, tetracyclines also have complex biological effects, including the modification of mitochondrial protein synthesis, metabolism and gene-expression. Long-term clinical studies have been performed using tetracyclines, without significant side effects. Previous studies demonstrated that doxycycline (DOX), a major tetracyclin antibiotic, exerted a protective effect in animal models of heart failure; however, its exact molecular mechanism is still unknown. Here, we provide the first evidence that DOX reduces oxidative stress—induced mitochondrial fragmentation and depolarization in H9c2 cardiomyocytes and beneficially alters the expression of Mfn-2, OPA-1 and Drp-1 –the main regulators of mitochondrial fusion and fission—in our isoproterenol (ISO)–induced heart failure model, ultimately decreasing the severity of heart failure. In mitochondria, oxidative stress causes a shift toward fission which leads to mitochondrial fragmentation and cell death. Protecting mitochondria from oxidative stress, and the regulation of mitochondrial dynamics by drugs that shift the balance toward fusion, could be a novel therapeutic approach for heart failure. On the basis of our findings, we raise the possibility that DOX could be a novel therapeutic agent in the future treatment of heart failure.


Oxidative Medicine and Cellular Longevity | 2017

Cardioprotective Effect of Resveratrol in a Postinfarction Heart Failure Model

Adam Riba; Laszlo Deres; Balazs Sumegi; Kalman Toth; Eszter Szabados; Robert Halmosi

Despite great advances in therapies observed during the last decades, heart failure (HF) remained a major health problem in western countries. In order to further improve symptoms and survival in patients with heart failure, novel therapeutic strategies are needed. In some animal models of HF resveratrol (RES), it was able to prevent cardiac hypertrophy, contractile dysfunction, and remodeling. Several molecular mechanisms are thought to be involved in its protective effects, such as inhibition of prohypertrophic signaling molecules, improvement of myocardial Ca2+ handling, regulation of autophagy, and the reduction of oxidative stress and inflammation. In our present study, we wished to further examine the effects of RES on prosurvival (Akt-1, GSK-3β) and stress signaling (p38-MAPK, ERK 1/2, and MKP-1) pathways, on oxidative stress (iNOS, COX-2 activity, and ROS formation), and ultimately on left ventricular function, hypertrophy and fibrosis in a murine, and isoproterenol- (ISO-) induced postinfarction heart failure model. RES treatment improved left ventricle function, decreased interstitial fibrosis, cardiac hypertrophy, and the level of plasma BNP induced by ISO treatment. ISO also increased the activation of P38-MAPK, ERK1/2Thr183-Tyr185, COX-2, iNOS, and ROS formation and decreased the phosphorylation of Akt-1, GSK-3β, and MKP-1, which were favorably influenced by RES. According to our results, regulation of these pathways may also contribute to the beneficial effects of RES in HF.

Collaboration


Dive into the Eszter Szabados's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Balazs Sumegi

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar

Balazs Sumegi

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge