Etienne Antoine
University of Montpellier
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Etienne Antoine.
Mechanisms of Development | 2001
Michael Weber; Laura Milligan; Annie Delalbre; Etienne Antoine; Claude Brunel; Guy Cathala; Thierry Forné
The imprinted Igf2 gene is active only on the paternal allele in most tissues. Its imprinting involves a cis-acting imprinting-control region (ICR) located upstream of the neighboring and maternally expressed H19 gene. It is thought that differential methylation of the parental alleles at the ICR is crucial for parental imprinting of both genes. Differentially methylated regions (DMRs) have also been identified within the Igf2 gene and their differential methylation is thought to be established during early development. To gain further insight into the function of these DMRs, we performed a quantitative analysis of their allelic methylation levels in different tissues during fetal development and the postnatal period in the mouse. Surprisingly, we found that the methylation levels of Igf2 DMRs vary extensively during fetal development, mostly on the expressed paternal allele. In particular, in skeletal muscle, differential allelic methylation in both DMR 1 and DMR 2 occurs only after birth, whereas correct paternal monoallelic expression is always observed, including in the embryonic stages. This suggests that differential methylation in the DMR 1 and DMR 2 of the Igf2 gene is dispensable for its imprinting in skeletal muscle. Furthermore, progressive methylation of the Igf2 paternal allele appears to be correlated with concomitant postnatal down-regulation and silencing of the gene. We discuss possible relations between Igf2 allelic methylation and expression during fetal development.
Oncogene | 2000
Laura Milligan; Etienne Antoine; Catherine Bisbal; Michael Weber; Claude Brunel; Thierry Forné; Guy Cathala
H19 is a paternally imprinted gene whose expression produces a 2.4 kb RNA in most tissues during development and in mammalian myoblastic cell lines upon differentiation. Deletion of the active maternal allele of H19 and its flanking regions in the mouse leads to biallelic methylation and loss of imprinting of the neighbouring Igf2 gene. The function of H19 RNA remains unknown and, although polysome-associated, the absence of a conserved open reading frame suggests that it does not encode a protein product. We describe a novel post-transcriptional regulation of H19 gene expression which, in spite of this lack of coding capacity, is dependent on translational activity. We show that stabilization of the RNA is solely responsible for its accumulation during in vitro muscle cell differentiation. This conclusion is based on the finding that inhibition of protein synthesis results in a dramatic destabilization of H19 RNA in proliferating mouse C2C12 myoblastic cells but not in differentiated cells, and on run-on experiments which showed that the rate of transcription of H19 RNA remains constant during muscle cell differentiation. This mechanism could also be involved in H19 gene expression during mouse development in addition to its transcriptional activation which we have shown to occur.
Journal of Molecular Medicine | 1997
Jamal Tazi; Ferdinand Rossi; Emmanuel Labourier; Imed-edine Gallouzi; Claude Brunel; Etienne Antoine
Abstract DNA topoisomerase I is required for the normal development of multicellular organisms, probably because it plays a role in controlling gene activity, in addition to its function in relieving tortional stress during DNA replication and transcription. The discovery of DNA topoisomerase I as a specific kinase that phosphorylates serine-arginine rich (SR) splicing factors may provide new insights into their precise function in regulating gene expression. It is clear that the splicing factors phosphorylated by DNA topoisomerase I can modulate gene expression by changing the splicing pattern of structural genes. Studies of the splicing mechanism suggest that the phosphorylation of serine residues of SR proteins contribute to their activity. As this phosphorylation can be accomplished by several kinases, it remains to be determined whether phosphorylation by DNA topoisomerase I protein kinase is the limiting step in regulating this process. The availability of specific inhibitors of DNA topoisomerase I, structurally related to the alkaloid camptothecin, have made it possible to address this question experimentally. These inhibitors, which hold great promise as antineoplastic drugs, lead to specific inhibition of SR protein phosphorylation in cultured cells. This observation will hopefully lead to improved understanding of the mechanism by which these drugs act at cellular level.
PLOS ONE | 2012
Van Tran; Franck Court; Anne Duputié; Etienne Antoine; Nathalie Aptel; Laura Milligan; Françoise Carbonell; Marie-Noëlle Lelay-Taha; Jacques Piette; Michael Weber; Didier Montarras; Christian Pinset; Luisa Dandolo; Thierry Forné; Guy Cathala
It was recently shown that a long non-coding RNA (lncRNA), that we named the 91H RNA (i.e. antisense H19 transcript), is overexpressed in human breast tumours and contributes in trans to the expression of the Insulin-like Growth Factor 2 (IGF2) gene on the paternal chromosome. Our preliminary experiments suggested that an H19 antisense transcript having a similar function may also be conserved in the mouse. In the present work, we further characterise the mouse 91H RNA and, using a genetic complementation approach in H19 KO myoblast cells, we show that ectopic expression of the mouse 91H RNA can up-regulate Igf2 expression in trans despite almost complete unmethylation of the Imprinting-Control Region (ICR). We then demonstrate that this activation occurs at the transcriptional level by activation of a previously unknown Igf2 promoter which displays, in mouse tissues, a preferential mesodermic expression (Pm promoter). Finally, our experiments indicate that a large excess of the H19 transcript can counteract 91H-mediated Igf2 activation. Our work contributes, in conjunction with other recent findings, to open new horizons to our understanding of Igf2 gene regulation and functions of the 91H/H19 RNAs in normal and pathological conditions.
Hepatology | 2009
Yannick Simonin; Olivier Disson; Hervé Lerat; Etienne Antoine; Fabien Binamé; Arielle R. Rosenberg; Solange Desagher; Patrice Lassus; Paulette Bioulac-Sage; Urszula Hibner
An unresolved question regarding the physiopathology of hepatitis C virus (HCV) infection is the remarkable efficiency with which host defenses are neutralized to establish chronic infection. Modulation of an apoptotic response is one strategy used by viruses to escape immune surveillance. We previously showed that HCV proteins down‐regulate expression of BH3‐only Bcl2 interacting domain (Bid) in hepatocytes of HCV transgenic mice. As a consequence, cells acquire resistance to Fas‐mediated apoptosis, which in turn leads to increased persistence of experimental viral infections in vivo. This mechanism might participate in the establishment of chronic infections and the resulting pathologies, including hepatocellular carcinoma. We now report that Bid is also down‐regulated in patients in the context of noncirrhotic HCV‐linked tumorigenesis and in the HCV RNA replicon system. We show that the nonstructural HCV viral protein NS5A is sufficient to activate a calpain cysteine protease, leading to degradation of Bid. Moreover, pharmacological inhibitors of calpains restore both the physiological levels of Bid and the sensitivity of cells toward a death receptor–mediated apoptotic signal. Finally, human HCV‐related tumors and hepatocytes from HCV transgenic mice that display low Bid expression contain activated calpains. Conclusion: Calpains activated by HCV proteins degrade Bid and thus dampen apoptotic signaling. These results suggest that inhibiting calpains could lead to an improved efficiency of immune‐mediated elimination of HCV‐infected cells. (Hepatology 2009.)
EMBO Reports | 2002
Laura Milligan; Thierry Forné; Etienne Antoine; Michael Weber; Bénédicte Hémonnot; Luisa Dandolo; Claude Brunel; Guy Cathala
In the gene expression pathway, RNA biogenesis is a central multi‐step process where both message fidelity and steady‐state levels of the mature RNA have to be ascertained. An emerging question is whether RNA levels could be regulated at the precursor stage. Until recently, because it was technically very difficult to determine the level of a pre‐mRNA, discrimination between changes in transcriptional activity and in pre‐mRNA metabolism was extremely difficult. H19 RNA, the untranslated product of an imprinted gene, undergoes post‐transcriptional regulation. Here, using a quantitative real‐time RT–PCR approach, we accurately quantify its precursor RNA levels and compare these with the transcriptional activity of the gene, assessed by run‐on assays. We find that the levels of H19 precursor RNA are regulated during physiological processes and this regulation appears to be related to RNA polymerase II transcription termination. Our results provide direct evidence that turnover of polymerase II primary transcripts can regulate gene expression in mammals.
Molecular BioSystems | 2012
Anne Saumet; Guillaume Vetter; Manuella Bouttier; Etienne Antoine; Christine Roubert; Béatrice Orsetti; Charles Theillet; Charles-Henri Lecellier
In addition to estrogen receptor modulators, retinoic acid and other retinoids are promising agents to prevent breast cancer. Retinoic acid and estrogen exert antagonistic regulations on the transcription of coding genes and we evaluated here whether these two compounds have similar effects on microRNAs. Using an integrative approach based on several bioinformatics resources together with experimental validations, we indeed found that retinoic acid positively regulates miR-210 and miR-23a/24-2 expressions and is counteracted by estrogen. Conversely, estrogen increased miR-17/92 and miR-424/450b expressions and is inhibited by retinoic acid. In silico functional enrichment further revealed that this combination of transcriptional/post-transcriptional regulations fully impacts on the molecular effects of estrogen and retinoic acid. Besides, we unveiled a novel effect of retinoic acid on aerobic glycolysis. We specifically showed that it increases extracellular lactate production, an effect counteracted by the miR-210 and the miR-23a/24-2, which simultaneously target lactate dehydrogenase A and B mRNAs. Together our results provide a new framework to better understand the estrogen/retinoic acid antagonism in breast cancer cells.
PLOS Pathogens | 2013
Yannick Simonin; Serena Vegna; Leila Akkari; Damien Grégoire; Etienne Antoine; Jacques Piette; Nicolas Floc'h; Patrice Lassus; Guann-Yi Yu; Arielle R. Rosenberg; Michael Karin; David Durantel; Urszula Hibner
Exposure to hepatitis C virus (HCV) typically results in chronic infection that leads to progressive liver disease ranging from mild inflammation to severe fibrosis and cirrhosis as well as primary liver cancer. HCV triggers innate immune signaling within the infected hepatocyte, a first step in mounting of the adaptive response against HCV infection. Persistent inflammation is strongly associated with liver tumorigenesis. The goal of our work was to investigate the initiation of the inflammatory processes triggered by HCV viral proteins in their host cell and their possible link with HCV-related liver cancer. We report a dramatic upregulation of the lymphotoxin signaling pathway and more specifically of lymphotoxin-β in tumors of the FL-N/35 HCV-transgenic mice. Lymphotoxin expression is accompanied by activation of NF-κB, neosynthesis of chemokines and intra-tumoral recruitment of mononuclear cells. Spectacularly, IKKβ inactivation in FL-N/35 mice drastically reduces tumor incidence. Activation of lymphotoxin-β pathway can be reproduced in several cellular models, including the full length replicon and HCV-infected primary human hepatocytes. We have identified NS5B, the HCV RNA dependent RNA polymerase, as the viral protein responsible for this phenotype and shown that pharmacological inhibition of its activity alleviates activation of the pro-inflammatory pathway. These results open new perspectives in understanding the inflammatory mechanisms linked to HCV infection and tumorigenesis.
Molecular and Cellular Biology | 2014
Adrien Barbarossa; Etienne Antoine; Henry Neel; Thierry Gostan; Johann Soret; Rémy Bordonné
ABSTRACT During the early steps of snRNP biogenesis, the survival motor neuron (SMN) complex acts together with the methylosome, an entity formed by the pICln protein, WD45, and the PRMT5 methyltransferase. To expand our understanding of the functional relationship between pICln and SMN in vivo, we performed a genetic analysis of an uncharacterized Schizosaccharomyces pombe pICln homolog. Although not essential, the S. pombe ICln (SpICln) protein is important for optimal yeast cell growth. The human ICLN gene complements the Δicln slow-growth phenotype, demonstrating that the identified SpICln sequence is the bona fide human homolog. Consistent with the role of human pICln inferred from in vitro experiments, we found that the SpICln protein is required for optimal production of the spliceosomal snRNPs and for efficient splicing in vivo. Genetic interaction approaches further demonstrate that modulation of ICln activity is unable to compensate for growth defects of SMN-deficient cells. Using a genome-wide approach and reverse transcription (RT)-PCR validation tests, we also show that splicing is differentially altered in Δicln cells. Our data are consistent with the notion that splice site selection and spliceosome kinetics are highly dependent on the concentration of core spliceosomal components.
Nature | 1996
Ferdinand Rossi; Emmanuel Labourier; Thierry Forné; Gilles Divita; Jean Derancourt; Jean-François Riou; Etienne Antoine; Guy Cathala; Claude Brunel; Jamal Tazi