Etienne Laliberté
Université de Montréal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Etienne Laliberté.
Ecology Letters | 2010
Etienne Laliberté; Jessie A. Wells; Fabrice DeClerck; Daniel J. Metcalfe; Carla Catterall; Cibele Queiroz; Isabelle Aubin; Stephen P. Bonser; Yi Ding; Jennifer M. Fraterrigo; Sean McNamara; John W. Morgan; Dalia Sánchez Merlos; Peter A. Vesk; Margaret M. Mayfield
Ecosystem resilience depends on functional redundancy (the number of species contributing similarly to an ecosystem function) and response diversity (how functionally similar species respond differently to disturbance). Here, we explore how land-use change impacts these attributes in plant communities, using data from 18 land-use intensity gradients that represent five biomes and > 2800 species. We identify functional groups using multivariate analysis of plant traits which influence ecosystem processes. Functional redundancy is calculated as the species richness within each group, and response diversity as the multivariate within-group dispersion in response trait space, using traits that influence responses to disturbances. Meta-analysis across all datasets showed that land-use intensification significantly reduced both functional redundancy and response diversity, although specific relationships varied considerably among the different land-use gradients. These results indicate that intensified management of ecosystems for resource extraction can increase their vulnerability to future disturbances.
Plant Physiology | 2011
Hans Lambers; Patrick M. Finnegan; Etienne Laliberté; Stuart J. Pearse; Megan H. Ryan; Michael W. Shane; Erik J. Veneklaas
Australia harbors some of the most nutrient-impoverished soils on Earth. Southwestern Australian soils are especially phosphorus (P) impoverished, due to the age of this ancient landscape and it being unaffected by major geological disturbance for millions of years ([Hopper, 2009][1]; [Lambers et al
Oecologia | 2009
Etienne Laliberté; Alain Paquette; Pierre Legendre; André Bouchard
Niche processes and other spatial processes, such as dispersal, may simultaneously control beta diversity, yet their relative importance may shift across spatial and temporal scales. Although disentangling the relative importance of these processes has been a continuing methodological challenge, recent developments in multi-scale spatial and temporal modeling can now help ecologists estimate their scale-specific contributions. Here we present a statistical approach to (1) detect the presence of a space–time interaction on community composition and (2) estimate the scale-specific importance of environmental and spatial factors on beta diversity. To illustrate the applicability of this approach, we use a case study from a temperate forest understory where tree seedling abundances were monitored during a 9-year period at 40 permanent plots. We found no significant space–time interaction on tree seedling composition, which means that the spatial abundance patterns did not vary over the study period. However, for a given year the relative importance of niche processes and other spatial processes was found to be scale-specific. Tree seedling abundances were primarily controlled by a broad-scale environmental gradient, but within the confines of this gradient the finer scale patchiness was largely due to other spatial processes. This case study illustrates that these two sets of processes are not mutually exclusive and can affect abundance patterns in a scale-dependent manner. More importantly, the use of our methodology for future empirical studies should help in the merging of niche and neutral perspectives on beta diversity, an obvious next step for community ecology.
New Phytologist | 2012
Hans Lambers; Gregory R. Cawthray; Patrick Giavalisco; John Kuo; Etienne Laliberté; Stuart J. Pearse; Wolf-Rüdiger Scheible; Mark Stitt; François P. Teste; Benjamin L. Turner
Proteaceae species in south-western Australia occur on severely phosphorus (P)-impoverished soils. They have very low leaf P concentrations, but relatively fast rates of photosynthesis, thus exhibiting extremely high photosynthetic phosphorus-use-efficiency (PPUE). Although the mechanisms underpinning their high PPUE remain unknown, one possibility is that these species may be able to replace phospholipids with nonphospholipids during leaf development, without compromising photosynthesis. For six Proteaceae species, we measured soil and leaf P concentrations and rates of photosynthesis of both young expanding and mature leaves. We also assessed the investment in galactolipids, sulfolipids and phospholipids in young and mature leaves, and compared these results with those on Arabidopsis thaliana, grown under both P-sufficient and P-deficient conditions. In all Proteaceae species, phospholipid levels strongly decreased during leaf development, whereas those of galactolipids and sulfolipids strongly increased. Photosynthetic rates increased from young to mature leaves. This shows that these species extensively replace phospholipids with nonphospholipids during leaf development, without compromising photosynthesis. A considerably less pronounced shift was observed in A. thaliana. Our results clearly show that a low investment in phospholipids, relative to nonphospholipids, offers a partial explanation for a high photosynthetic rate per unit leaf P in Proteaceae adapted to P-impoverished soils.
Ecology | 2012
Etienne Laliberté; Jason M. Tylianakis
There is much concern that the functioning of ecosystems will be affected by human-induced changes in biodiversity, of which land-use change is the most important driver. However, changes in biodiversity may be only one of many pathways through which land use alters ecosystem functioning, and its importance relative to other pathways remains unclear. In particular, although biodiversity-ecosystem function research has focused primarily on grasslands, the increases in agricultural inputs (e.g., fertilization, irrigation) and grazing pressure that drive change in grasslands worldwide have been largely ignored. Here we show that long-term (27-year) manipulations of soil resource availability and sheep grazing intensity caused marked, consistent shifts in grassland plant functional composition and diversity, with cascading (i.e., causal chains of) direct, indirect, and interactive effects on multiple ecosystem functions. Resource availability exerted dominant control over above-ground net primary production (ANPP), both directly and indirectly via shifts in plant functional composition. Importantly, the effects of plant functional diversity and grazing intensity on ANPP shifted from negative to positive as agricultural inputs increased, providing strong evidence that soil resource availability modulates the impacts of plant diversity and herbivory on primary production. These changes in turn altered litter decomposition and, ultimately, soil carbon sequestration, highlighting the relevance of ANPP as a key integrator of ecosystem functioning. Our study reveals how human alterations of bottom-up (resources) and top-down (herbivory) forces together interact to control the functioning of grazing systems, the most extensive land use on Earth.
Ecology | 2010
Etienne Laliberté; Jason M. Tylianakis
Human activities drive biotic homogenization (loss of regional diversity) of many taxa. However, whether species interaction networks (e.g., food webs) can also become homogenized remains largely unexplored. Using 48 quantitative parasitoid-host networks replicated through space and time across five tropical habitats, we show that deforestation greatly homogenized network structure at a regional level, such that interaction composition became more similar across rice and pasture sites compared with forested habitats. This was not simply caused by altered consumer and resource community composition, but was associated with altered consumer foraging success, such that parasitoids were more likely to locate their hosts in deforested habitats. Furthermore, deforestation indirectly homogenized networks in time through altered mean consumer and prey body size, which decreased in deforested habitats. Similar patterns were obtained with binary networks, suggesting that interaction (link) presence-absence data may be sufficient to detect network homogenization effects. Our results show that tropical agroforestry systems can support regionally diverse parasitoid-host networks, but that removal of canopy cover greatly homogenizes the structure of these networks in space, and to a lesser degree in time. Spatiotemporal homogenization of interaction networks may alter coevolutionary outcomes and reduce ecological resilience at regional scales, but may not necessarily be predictable from community changes observed within individual trophic levels.
Science | 2014
Etienne Laliberté; Graham Zemunik; Benjamin L. Turner
How plant species diversity is shaped Factors controlling plant species diversity have been teased apart in an ancient dune ecosystem in western Australia. Laliberté et al. surveyed plants in the ancient dune, where variation in soil properties is associated with changes in plant diversity. Local plant diversity was mostly determined by environmental filtering from the regional species pool. This process is driven by acidification during long-term soil formation. The findings challenge the prevailing view that resource competition controls local plant diversity. Science, this issue p. 1602 A >2-million-year soil chronosequence reveals how the environment can regulate species plant diversity. The mechanisms that shape plant diversity along resource gradients remain unresolved because competing theories have been evaluated in isolation. By testing multiple theories simultaneously across a >2-million-year dune chronosequence in an Australian biodiversity hotspot, we show that variation in plant diversity is not explained by local resource heterogeneity, resource partitioning, nutrient stoichiometry, or soil fertility along this strong resource gradient. Rather, our results suggest that diversity is determined by environmental filtering from the regional flora, driven by soil acidification during long-term pedogenesis. This finding challenges the prevailing view that resource competition controls local plant diversity along resource gradients, and instead reflects processes shaping species pools over evolutionary time scales.
Oecologia | 2016
Bill Shipley; Francesco de Bello; J. Hans C. Cornelissen; Etienne Laliberté; Daniel C. Laughlin; Peter B. Reich
The promise of “trait-based” plant ecology is one of generalized prediction across organizational and spatial scales, independent of taxonomy. This promise is a major reason for the increased popularity of this approach. Here, we argue that some important foundational assumptions of trait-based ecology have not received sufficient empirical evaluation. We identify three such assumptions and, where possible, suggest methods of improvement: (i) traits are functional to the degree that they determine individual fitness, (ii) intraspecific variation in functional traits can be largely ignored, and (iii) functional traits show general predictive relationships to measurable environmental gradients.
Annals of Botany | 2012
Hans Lambers; John G. Bishop; Stephen D. Hopper; Etienne Laliberté; Alejandra Zúñiga-Feest
BACKGROUND Carboxylate-releasing cluster roots of Proteaceae play a key role in acquiring phosphorus (P) from ancient nutrient-impoverished soils in Australia. However, cluster roots are also found in Proteaceae on young, P-rich soils in Chile where they allow P acquisition from soils that strongly sorb P. SCOPE Unlike Proteaceae in Australia that tend to proficiently remobilize P from senescent leaves, Chilean Proteaceae produce leaf litter rich in P. Consequently, they may act as ecosystem engineers, providing P for plants without specialized roots to access sorbed P. We propose a similar ecosystem-engineering role for species that release large amounts of carboxylates in other relatively young, strongly P-sorbing substrates, e.g. young acidic volcanic deposits and calcareous dunes. Many of these species also fix atmospheric nitrogen and release nutrient-rich litter, but their role as ecosystem engineers is commonly ascribed only to their diazotrophic nature. CONCLUSIONS We propose that the P-mobilizing capacity of Proteaceae on young soils, which contain an abundance of P, but where P is poorly available, in combination with inefficient nutrient remobilization from senescing leaves allows these species to function as ecosystem engineers. We suggest that diazotrophic species that colonize young soils with strong P-sorption potential should be considered for their positive effect on P availability, as well as their widely accepted role in nitrogen fixation. Their P-mobilizing activity possibly also enhances their nitrogen-fixing capacity. These diazotrophic species may therefore facilitate the establishment and growth of species with less-efficient P-uptake strategies on more-developed soils with low P availability through similar mechanisms. We argue that the significance of cluster roots and high carboxylate exudation in the development of young ecosystems is probably far more important than has been envisaged thus far.
Trends in Plant Science | 2015
Hans Lambers; Patrick E. Hayes; Etienne Laliberté; Rafael S. Oliveira; Benjamin L. Turner
Plants that deploy a phosphorus (P)-mobilising strategy based on the release of carboxylates tend to have high leaf manganese concentrations ([Mn]). This occurs because the carboxylates mobilise not only soil inorganic and organic P, but also a range of micronutrients, including Mn. Concentrations of most other micronutrients increase to a small extent, but Mn accumulates to significant levels, even when plants grow in soil with low concentrations of exchangeable Mn availability. Here, we propose that leaf [Mn] can be used to select for genotypes that are more efficient at acquiring P when soil P availability is low. Likewise, leaf [Mn] can be used to screen for belowground functional traits related to nutrient-acquisition strategies among species in low-P habitats.