Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Etienne Vouga is active.

Publication


Featured researches published by Etienne Vouga.


international conference on computer graphics and interactive techniques | 2013

3D self-portraits

Hao Li; Etienne Vouga; Anton Gudym; Linjie Luo; Jonathan T. Barron; Gleb Gusev

We develop an automatic pipeline that allows ordinary users to capture complete and fully textured 3D models of themselves in minutes, using only a single Kinect sensor, in the uncontrolled lighting environment of their own home. Our method requires neither a turntable nor a second operator, and is robust to the small deformations and changes of pose that inevitably arise during scanning. After the users rotate themselves with the same pose for a few scans from different views, our system stitches together the captured scans using multi-view non-rigid registration, and produces watertight final models. To ensure consistent texturing, we recover the underlying albedo from each scanned texture and generate seamless global textures using Poisson blending. Despite the minimal requirements we place on the hardware and users, our method is suitable for full body capture of challenging scenes that cannot be handled well using previous methods, such as those involving loose clothing, complex poses, and props.


Nature Materials | 2016

Programming curvature using origami tessellations

Levi H. Dudte; Etienne Vouga; Tomohiro Tachi; L. Mahadevan

Origami describes rules for creating folded structures from patterns on a flat sheet, but does not prescribe how patterns can be designed to fit target shapes. Here, starting from the simplest periodic origami pattern that yields one-degree-of-freedom collapsible structures-we show that scale-independent elementary geometric constructions and constrained optimization algorithms can be used to determine spatially modulated patterns that yield approximations to given surfaces of constant or varying curvature. Paper models confirm the feasibility of our calculations. We also assess the difficulty of realizing these geometric structures by quantifying the energetic barrier that separates the metastable flat and folded states. Moreover, we characterize the trade-off between the accuracy to which the pattern conforms to the target surface, and the effort associated with creating finer folds. Our approach enables the tailoring of origami patterns to drape complex surfaces independent of absolute scale, as well as the quantification of the energetic and material cost of doing so.


international conference on computer graphics and interactive techniques | 2012

Design of self-supporting surfaces

Etienne Vouga; Johannes Wallner; Helmut Pottmann

Self-supporting masonry is one of the most ancient and elegant techniques for building curved shapes. Because of the very geometric nature of their failure, analyzing and modeling such strutures is more a geometry processing problem than one of classical continuum mechanics. This paper uses the thrust network method of analysis and presents an iterative nonlinear optimization algorithm for efficiently approximating freeform shapes by self-supporting ones. The rich geometry of thrust networks leads us to close connections between diverse topics in discrete differential geometry, such as a finite-element discretization of the Airy stress potential, perfect graph Laplacians, and computing admissible loads via curvatures of polyhedral surfaces. This geometric viewpoint allows us, in particular, to remesh self-supporting shapes by self-supporting quad meshes with planar faces, and leads to another application of the theory: steel/glass constructions with low moments in nodes.


computer vision and pattern recognition | 2016

Dense Human Body Correspondences Using Convolutional Networks

Lingyu Wei; Qixing Huang; Duygu Ceylan; Etienne Vouga; Hao Li

We propose a deep learning approach for finding dense correspondences between 3D scans of people. Our method requires only partial geometric information in the form of two depth maps or partial reconstructed surfaces, works for humans in arbitrary poses and wearing any clothing, does not require the two people to be scanned from similar view-points, and runs in real time. We use a deep convolutional neural network to train a feature descriptor on depth map pixels, but crucially, rather than training the network to solve the shape correspondence problem directly, we train it to solve a body region classification problem, modified to increase the smoothness of the learned descriptors near region boundaries. This approach ensures that nearby points on the human body are nearby in feature space, and vice versa, rendering the feature descriptor suitable for computing dense correspondences between the scans. We validate our method on real and synthetic data for both clothed and unclothed humans, and show that our correspondences are more robust than is possible with state-of-the-art unsupervised methods, and more accurate than those found using methods that require full watertight 3D geometry.


Computer Graphics Forum | 2012

Flexible Developable Surfaces

Justin Solomon; Etienne Vouga; Max Wardetzky; Eitan Grinspun

We introduce a discrete paradigm for developable surface modeling. Unlike previous attempts at interactive developable surface modeling, our system is able to enforce exact developability at every step, ensuring that users do not inadvertently suggest configurations that leave the manifold of admissible folds of a flat two‐dimensional sheet. With methods for navigation of this highly nonlinear constraint space in place, we show how to formulate a discrete mean curvature bending energy measuring how far a given discrete developable surface is from being flat. This energy enables relaxation of user‐generated configurations and suggests a straightforward subdivision scheme that produces admissible smoothed versions of bent regions of our discrete developable surfaces.


international conference on computer graphics and interactive techniques | 2013

Urban pattern: layout design by hierarchical domain splitting

Yong-Liang Yang; Jun Wang; Etienne Vouga; Peter Wonka

We present a framework for generating street networks and parcel layouts. Our goal is the generation of high-quality layouts that can be used for urban planning and virtual environments. We propose a solution based on hierarchical domain splitting using two splitting types: streamline-based splitting, which splits a region along one or multiple streamlines of a cross field, and template-based splitting, which warps pre-designed templates to a region and uses the interior geometry of the template as the splitting lines. We combine these two splitting approaches into a hierarchical framework, providing automatic and interactive tools to explore the design space.


european conference on computer vision | 2016

Capturing Dynamic Textured Surfaces of Moving Targets

Ruizhe Wang; Lingyu Wei; Etienne Vouga; Qixing Huang; Duygu Ceylan; Gérard G. Medioni; Hao Li

We present an end-to-end system for reconstructing complete watertight and textured models of moving subjects such as clothed humans and animals, using only three or four handheld sensors. The heart of our framework is a new pairwise registration algorithm that minimizes, using a particle swarm strategy, an alignment error metric based on mutual visibility and occlusion. We show that this algorithm reliably registers partial scans with as little as 15 % overlap without requiring any initial correspondences, and outperforms alternative global registration algorithms. This registration algorithm allows us to reconstruct moving subjects from free-viewpoint video produced by consumer-grade sensors, without extensive sensor calibration, constrained capture volume, expensive arrays of cameras, or templates of the subject geometry.


international conference on computer graphics and interactive techniques | 2015

Nested cages

Leonardo Sacht; Etienne Vouga; Alec Jacobson

Many tasks in geometry processing and physical simulation benefit from multiresolution hierarchies. One important characteristic across a variety of applications is that coarser layers strictly encage finer layers, nesting one another. Existing techniques such as surface mesh decimation, voxelization, or contouring distance level sets do not provide sufficient control over the quality of the output surfaces while maintaining strict nesting. We propose a solution that enables use of application-specific decimation and quality metrics. The method constructs each next-coarsest level of the hierarchy, using a sequence of decimation, flow, and contact-aware optimization steps. From coarse to fine, each layer then fully encages the next while retaining a snug fit. The method is applicable to a wide variety of shapes of complex geometry and topology. We demonstrate the effectiveness of our nested cages not only for multigrid solvers, but also for conservative collision detection, domain discretization for elastic simulation, and cage-based geometric modeling.


ACM Transactions on Graphics | 2016

Reconciling Elastic and Equilibrium Methods for Static Analysis

Hijung Valentina Shin; Christopher F. Porst; Etienne Vouga; John Ochsendorf

We examine two widely used classes of methods for static analysis of masonry buildings: linear elasticity analysis using finite elements and equilibrium methods. It is often claimed in the literature that finite element analysis is less accurate than equilibrium analysis when it comes to masonry analysis; we examine and qualify this claimed inaccuracy, provide a systematic explanation for the discrepancy observed between their results, and present a unified formulation of the two approaches to stability analysis. We prove that both approaches can be viewed as equivalent, dual methods for getting the same answer to the same problem. We validate our observations with simulations and physical tilt experiments of structures.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Growth patterns for shape-shifting elastic bilayers

Wim M. van Rees; Etienne Vouga; L. Mahadevan

Significance Many biological forms, such as leaves, flowers, and faces, are shaped by complex growth patterns. How can we prescribe the rules of growth on a simple surface so that it will morph into a flower or a face? Here, we solve this inverse problem of designing the growth patterns for an anisotropically growing elastic bilayer structure and prove that it can be used to achieve any target surface shape from any reference shape. We demonstrate the applicability of this result via the computational design of growth patterns for animal, vegetable, and mineral surfaces—a face, a flower, and a canyon. Our solution provides algorithms for engineering complex functional shapes in tissues, and actuation systems in soft robotics, and elsewhere. Inspired by the differential-growth-driven morphogenesis of leaves, flowers, and other tissues, there is increasing interest in artificial analogs of these shape-shifting thin sheets made of active materials that respond to environmental stimuli such as heat, light, and humidity. But how can we determine the growth patterns to achieve a given shape from another shape? We solve this geometric inverse problem of determining the growth factors and directions (the metric tensors) for a given isotropic elastic bilayer to grow into a target shape by posing and solving an elastic energy minimization problem. A mathematical equivalence between bilayers and curved monolayers simplifies the inverse problem considerably by providing algebraic expressions for the growth metric tensors in terms of those of the final shape. This approach also allows us to prove that we can grow any target surface from any reference surface using orthotropically growing bilayers. We demonstrate this by numerically simulating the growth of a flat sheet into a face, a cylindrical sheet into a flower, and a flat sheet into a complex canyon-like structure.

Collaboration


Dive into the Etienne Vouga's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hao Li

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Qixing Huang

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Cem Celal Tutum

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lingyu Wei

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Risto Miikkulainen

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Max Wardetzky

University of Göttingen

View shared research outputs
Researchain Logo
Decentralizing Knowledge