Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Etsuko Katoh is active.

Publication


Featured researches published by Etsuko Katoh.


Nature | 2005

GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin.

Miyako Ueguchi-Tanaka; Motoyuki Ashikari; Masatoshi Nakajima; Hironori Itoh; Etsuko Katoh; Masatomo Kobayashi; Teh-yuan Chow; Yue-ie C. Hsing; Hidemi Kitano; Isomaro Yamaguchi; Makoto Matsuoka

Gibberellins (GAs) are phytohormones that are essential for many developmental processes in plants. It has been postulated that plants have both membrane-bound and soluble GA receptors; however, no GA receptors have yet been identified. Here we report the isolation and characterization of a new GA-insensitive dwarf mutant of rice, gid1. The GID1 gene encodes an unknown protein with similarity to the hormone-sensitive lipases, and we observed preferential localization of a GID1–green fluorescent protein (GFP) signal in nuclei. Recombinant glutathione S-transferase (GST)–GID1 had a high affinity only for biologically active GAs, whereas mutated GST–GID1 corresponding to three gid1 alleles had no GA-binding affinity. The dissociation constant for GA4 was estimated to be around 10-7 M, enough to account for the GA dependency of shoot elongation. Moreover, GID1 bound to SLR1, a rice DELLA protein, in a GA-dependent manner in yeast cells. GID1 overexpression resulted in a GA-hypersensitive phenotype. Together, our results indicate that GID1 is a soluble receptor mediating GA signalling in rice.


The Plant Cell | 2007

Molecular Interactions of a Soluble Gibberellin Receptor, GID1, with a Rice DELLA Protein, SLR1, and Gibberellin

Miyako Ueguchi-Tanaka; Masatoshi Nakajima; Etsuko Katoh; Hiroko Ohmiya; Kenji Asano; Shoko Saji; Xiang Hongyu; Motoyuki Ashikari; Hidemi Kitano; Isomaro Yamaguchi; Makoto Matsuoka

GIBBERELLIN INSENSITIVE DWARF1 (GID1) encodes a soluble gibberellin (GA) receptor that shares sequence similarity with a hormone-sensitive lipase (HSL). Previously, a yeast two-hybrid (Y2H) assay revealed that the GID1-GA complex directly interacts with SLENDER RICE1 (SLR1), a DELLA repressor protein in GA signaling. Here, we demonstrated, by pull-down and bimolecular fluorescence complementation (BiFC) experiments, that the GA-dependent GID1–SLR1 interaction also occurs in planta. GA4 was found to have the highest affinity to GID1 in Y2H assays and is the most effective form of GA in planta. Domain analyses of SLR1 using Y2H, gel filtration, and BiFC methods revealed that the DELLA and TVHYNP domains of SLR1 are required for the GID1–SLR1 interaction. To identify the important regions of GID1 for GA and SLR1 interactions, we used many different mutant versions of GID1, such as the spontaneous mutant GID1s, N- and C-terminal truncated GID1s, and mutagenized GID1 proteins with conserved amino acids replaced with Ala. The amino acid residues important for SLR1 interaction completely overlapped the residues required for GA binding that were scattered throughout the GID1 molecule. When we plotted these residues on the GID1 structure predicted by analogy with HSL tertiary structure, many residues were located at regions corresponding to the substrate binding pocket and lid. Furthermore, the GA–GID1 interaction was stabilized by SLR1. Based on these observations, we proposed a molecular model for interaction between GA, GID1, and SLR1.


Nature Structural & Molecular Biology | 2001

Structure of the electron transfer complex between ferredoxin and ferredoxin-NADP(+) reductase.

Genji Kurisu; Masami Kusunoki; Etsuko Katoh; Toshimasa Yamazaki; Keizo Teshima; Yayoi Onda; Yoko Kimata-Ariga; Toshiharu Hase

All oxygenic photosynthetically derived reducing equivalents are utilized by combinations of a single multifuctional electron carrier protein, ferredoxin (Fd), and several Fd-dependent oxidoreductases. We report the first crystal structure of the complex between maize leaf Fd and Fd-NADP+ oxidoreductase (FNR). The redox centers in the complex — the 2Fe–2S cluster of Fd and flavin adenine dinucleotide (FAD) of FNR — are in close proximity; the shortest distance is 6.0 Å. The intermolecular interactions in the complex are mainly electrostatic, occurring through salt bridges, and the interface near the prosthetic groups is hydrophobic. NMR experiments on the complex in solution confirmed the FNR recognition sites on Fd that are identified in the crystal structure. Interestingly, the structures of Fd and FNR in the complex and in the free state differ in several ways. For example, in the active site of FNR, Fd binding induces the formation of a new hydrogen bond between side chains of Glu 312 and Ser 96 of FNR. We propose that this type of molecular communication not only determines the optimal orientation of the two proteins for electron transfer, but also contributes to the modulation of the enzymatic properties of FNR.


The Plant Cell | 2002

Molecular Structure of the GARP Family of Plant Myb-Related DNA Binding Motifs of the Arabidopsis Response Regulators

Kazuo Hosoda; Aya Imamura; Etsuko Katoh; Tomohisa Hatta; Mari Tachiki; Hisami Yamada; Takeshi Mizuno; Toshimasa Yamazaki

The B motif is a signature of type-B response regulators (ARRs) involved in His-to-Asp phosphorelay signal transduction systems in Arabidopsis. Homologous motifs occur widely in the GARP family of plant transcription factors. To gain general insight into the structure and function of B motifs (or GARP motifs), we characterized the B motif derived from a representative ARR, ARR10, which led to a number of intriguing findings. First, the B motif of ARR10 (named ARR10-B and extending from Thr-179 to Ser-242) possesses a nuclear localization signal, as indicated by the intracellular localization of a green fluorescent protein–ARR10-B fusion protein in onion epidermal cells. Second, the purified ARR10-B molecule binds specifically in vitro to DNA with the core sequence AGATT. This was demonstrated by several in vitro approaches, including PCR-assisted DNA binding site selection, gel retardation assays, and surface plasmon resonance analysis. Finally, the three-dimensional structure of ARR10-B in solution was determined by NMR spectroscopy, showing that it contains a helix-turn-helix structure. Furthermore, the mode of interaction between ARR10-B and the target DNA was assessed extensively by NMR spectroscopy. Together, these results lead us to propose that the mechanism of DNA recognition by ARR10-B is essentially the same as that of homeodomains. We conclude that the B motif is a multifunctional domain responsible for both nuclear localization and DNA binding and suggest that these insights could be applicable generally to the large GARP family of plant transcription factors.


The Plant Cell | 2007

The GID1-Mediated Gibberellin Perception Mechanism Is Conserved in the Lycophyte Selaginella moellendorffii but Not in the Bryophyte Physcomitrella patens

Ko Hirano; Masatoshi Nakajima; Kenji Asano; Tomoaki Nishiyama; Hitoshi Sakakibara; Mikiko Kojima; Etsuko Katoh; Hongyu Xiang; Takako Tanahashi; Mitsuyasu Hasebe; Jo Ann Banks; Motoyuki Ashikari; Hidemi Kitano; Miyako Ueguchi-Tanaka; Makoto Matsuoka

In rice (Oryza sativa) and Arabidopsis thaliana, gibberellin (GA) signaling is mediated by GIBBERELLIN-INSENSITIVE DWARF1 (GID1) and DELLA proteins in collaboration with a GA-specific F-box protein. To explore when plants evolved the ability to perceive GA by the GID1/DELLA pathway, we examined these GA signaling components in the lycophyte Selaginella moellendorffii and the bryophyte Physcomitrella patens. An in silico search identified several homologs of GID1, DELLA, and GID2, a GA-specific F-box protein in rice, in both species. Sm GID1a and Sm GID1b, GID1 proteins from S. moellendorffii, showed GA binding activity in vitro and interacted with DELLA proteins from S. moellendorffii in a GA-dependent manner in yeast. Introduction of constitutively expressed Sm GID1a, Sm G1D1b, and Sm GID2a transgenes rescued the dwarf phenotype of rice gid1 and gid2 mutants. Furthermore, treatment with GA4, a major GA in S. moellendorffii, caused downregulation of Sm GID1b, Sm GA20 oxidase, and Sm GA3 oxidase and degradation of the Sm DELLA1 protein. These results demonstrate that the homologs of GID1, DELLA, and GID2 work in a similar manner in S. moellendorffii and in flowering plants. Biochemical studies revealed that Sm GID1s have different GA binding properties from GID1s in flowering plants. No evidence was found for the functional conservation of these genes in P. patens, indicating that GID1/DELLA-mediated GA signaling, if present, differs from that in vascular plants. Our results suggest that GID1/DELLA-mediated GA signaling appeared after the divergence of vascular plants from the moss lineage.


Radiation Physics and Chemistry | 2001

Chemical structure and physical properties of radiation-induced crosslinking of polytetrafluoroethylene

Akihiro Oshima; Shigetoshi Ikeda; Etsuko Katoh; Yoneho Tabata

Abstract The chemical structure and physical properties of polytetrafluoroethylene (PTFE) that has been crosslinked by radiation have been studied by various methods. It has been found that a Y-type crosslinking structure and a Y-type structure incorporating a double bond (modified Y-type) is formed in PTFE by radiation-crosslinking in the molten state. In addition, various types of double bond structures, excluding the crosslinking site, have been identified. The crosslinked PTFE has a good light transparency due to the loss of crystallites, whilst it retains the excellent properties of electrical insulation and heat resistance. The coefficient of abrasion and the permanent creep are also greatly improved by crosslinking.


Cellular Microbiology | 2006

Identification of glycosylation genes and glycosylated amino acids of flagellin in Pseudomonas syringae pv. tabaci

Fumiko Taguchi; Kasumi Takeuchi; Etsuko Katoh; Katsuyoshi Murata; Tomoko Suzuki; Mizuri Marutani; Takayuki Kawasaki; Minako Eguchi; Shizue Katoh; Hanae Kaku; Chihiro Yasuda; Yoshishige Inagaki; Kazuhiro Toyoda; Tomonori Shiraishi; Yuki Ichinose

A glycosylation island is a genetic region required for glycosylation. The glycosylation island of flagellin in Pseudomonas syringae pv. tabaci 6605 consists of three orfs: orf1, orf2 and orf3. Orf1 and orf2 encode putative glycosyltransferases, and their deletion mutants, Δorf1 and Δorf2, exhibit deficient flagellin glycosylation or produce partially glycosylated flagellin respectively. Digestion of glycosylated flagellin from wild‐type bacteria and non‐glycosylated flagellin from Δorf1 mutant using aspartic N‐peptidase and subsequent HPLC analysis revealed candidate glycosylated amino acids. By generation of site‐directed Ser/Ala‐substituted mutants, all glycosylated amino acid residues were identified at positions 143, 164, 176, 183, 193 and 201. Matrix‐assisted laser desorption/ionization time of flight (MALDI‐TOF) mass spectrometry (MS) analysis revealed that each glycan was about 540 Da. While all glycosylation‐defective mutants retained swimming ability, swarming ability was reduced in the Δorf1, Δorf2 and Ser/Ala‐substituted mutants. All glycosylation mutants were also found to be impaired in the ability to adhere to a polystyrene surface and in the ability to cause disease in tobacco. Based on the predicted tertiary structure of flagellin, S176 and S183 are expected to be located on most external surface of the flagellum. Thus the effect of Ala‐substitution of these serines is stronger than that of other serines. These results suggest that glycosylation of flagellin in P. syringae pv. tabaci 6605 is required for bacterial virulence. It is also possible that glycosylation of flagellin may mask elicitor function of flagellin molecule.


The Plant Cell | 2005

The Critical Role of Disulfide Bond Formation in Protein Sorting in the Endosperm of Rice

Yasushi Kawagoe; Kazuya Suzuki; Mikako Tasaki; Hiroshi Yasuda; Kayo Akagi; Etsuko Katoh; Naoko K. Nishizawa; Masahiro Ogawa; Fumio Takaiwa

Many seed storage proteins, including monomeric 2S albumin and polymeric prolamin, contain conserved sequences in three separate regions, termed A, B, and C, which contain the consensus motifs LxxC, CCxQL, and PxxC, respectively. Protein-sorting mechanisms in rice (Oryza sativa) endosperm were studied with a green fluorescent protein (GFP) fused to different segments of rice α-globulin, a monomeric, ABC-containing storage protein. The whole ABC region together with GFP was efficiently transported to protein storage vacuoles (type II protein bodies [PB-II]) in the endosperm cells and sequestered in the matrix that surrounds the crystalloids. Peptide Gln-23 to Ser-43 in the A region was sufficient to guide GFP to PB-II. However, GFP fused with the AB or B region accumulated in prolamin protein bodies. Substitution mutations in the CCxQL motif in the B region significantly altered protein localization in the endosperm cells. Furthermore, protein extracts containing these substituted proteins had increased amounts of the endoplasmic reticulum (ER) chaperons BiP (for binding protein), protein disulfide isomerase, and calnexin as a part of protein complexes that were insoluble in a detergent buffer. These results suggest that the ER chaperons and disulfide bonds formed at the dicysteine residues in CCxQL play critical roles in sorting fused proteins in the endosperm cells.


Plant Journal | 2009

CNI1/ATL31, a RING-type ubiquitin ligase that functions in the carbon/nitrogen response for growth phase transition in Arabidopsis seedlings

Takeo Sato; Shugo Maekawa; Shigetaka Yasuda; Yutaka Sonoda; Etsuko Katoh; Takanari Ichikawa; Miki Nakazawa; Motoaki Seki; Kazuo Shinozaki; Minami Matsui; Derek B. Goto; Akira Ikeda; Junji Yamaguchi

Plants are able to sense and respond to changes in the balance between carbon (C) and nitrogen (N) metabolite availability, known as the C/N response. During the transition to photoautotrophic growth following germination, growth of seedlings is arrested if a high external C/N ratio is detected. To clarify the mechanisms for C/N sensing and signaling during this transition period, we screened a large collection of FOX transgenic plants, overexpressing full-length cDNAs, for individuals able to continue post-germinative growth under severe C/N stress. One line, cni1-D (carbon/nitrogen insensitive 1-dominant), was shown to have a suppressed sensitivity to C/N conditions at both the physiological and molecular level. The CNI1 cDNA encoded a predicted RING-type ubiquitin ligase previously annotated as ATL31. Overexpression of ATL31 was confirmed to be responsible for the cni1-D phenotype, and a knock-out of this gene resulted in hypersensitivity to C/N conditions during post-germinative growth. The ATL31 protein was confirmed to contain ubiquitin ligase activity using an in vitro assay system. Moreover, removal of this ubiquitin ligase activity from the overexpressed protein resulted in the loss of the mutant phenotype. Taken together, these data demonstrated that CNI1/ATL31 activity is required for the plant C/N response during seedling growth transition.


Radiation Physics and Chemistry | 1999

Evidence for radiation induced crosslinking in polytetrafluoroethylene by means of high-resolution solid-state 19F high-speed MAS NMR

Etsuko Katoh; Hisashi Sugisawa; Akihiro Oshima; Yoneho Tabata; Tadao Seguchi; Toshimasa Yamazaki

Radiation effects on molecular structure of polytetrafluoroethylene (PTFE) were studied by high-resolution solid-state 19F high speed magic angle spinning (HS MAS) NMR spectroscopy. Samples used for the NMR studies were prepared by electron beam irradiation of PTFE with a wide range of irradiation doses from 0.5–10 MGy in the molten state at 340°C under oxygen-free atmosphere. While the non-irradiated PTFE displayed only an intense peak of the internal CF2, several new signals corresponding to CF3, CF2 and CF groups were observed for the PTFE which was high temperature irradiated at 340°C in oxygen-free atmosphere (hti-PTFE). Intensities of these new signals increased with an increase of irradiation dose. The present solid-state 19F HS MAS NMR studies provide not only the first experimental evidence regarding the existence of crosslinking structure in hti-PTFE, directly detected as the CF signal, but also the crosslinking density which can be estimated from a proportion of the CF versus total fluorine signal intensities. The higher the irradiation dose, the higher the crosslinking density; hti-PTFE with 10 MGy contains one crosslinking site per approximately 24 CF2 groups, while the hti-PTFE with 5 MGy contains one crosslinking site per approximately 36 CF2 groups. Further, G value of crosslinking (G(x)) was estimated from the signal intensities of 19F HS MAS NMR spectra. The highest G(x)-value, 1.85, was observed for the 2MGy hti-PTFE sample, suggesting that crosslinking of PTFE is formed most efficaciously with 2 MGy irradiation in the molten state at 340°C under oxygen-free atmosphere.

Collaboration


Dive into the Etsuko Katoh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katsuyoshi Murata

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Shizue Katoh

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isao Ando

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuhiro Ishibashi

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge