Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuhiro Ishibashi is active.

Publication


Featured researches published by Kazuhiro Ishibashi.


Proceedings of the National Academy of Sciences of the United States of America | 2007

An inhibitor of viral RNA replication is encoded by a plant resistance gene

Kazuhiro Ishibashi; Kiyoshi Masuda; Satoshi Naito; Tetsuo Meshi; Masayuki Ishikawa

The tomato Tm-1 gene confers resistance to tomato mosaic virus (ToMV). Here, we report that the extracts of Tm-1 tomato cells (GCR237) have properties that inhibit the in vitro RNA replication of WT ToMV more strongly than that of the Tm-1-resistance-breaking mutant of ToMV, LT1. We purified this inhibitory activity and identified a polypeptide of ≈80 kDa (p80GCR237) using LC–tandem MS. The amino acid sequence of p80GCR237 had no similarity to any characterized proteins. The p80GCR237 gene cosegregated with Tm-1; transgenic expression of p80GCR237 conferred resistance to ToMV within tomato plants; and the knockdown of p80GCR237 sensitized Tm-1 tomato plants to ToMV, indicating that Tm-1 encodes p80GCR237 itself. We further show that in vitro-synthesized Tm-1 (p80GCR237) protein binds to the replication proteins of WT ToMV and inhibits their function at a step before, but not after, the viral replication complex is formed on the membrane surfaces. Such binding was not observed for the replication proteins of LT1. These results suggest that Tm-1 (p80GCR237) inhibits the replication of WT ToMV RNA through binding to the replication proteins.


Molecular Plant-microbe Interactions | 2010

Interactions between tobamovirus replication proteins and cellular factors: their impacts on virus multiplication.

Kazuhiro Ishibashi; Masaki Nishikiori; Masayuki Ishikawa

Most viral gene products function inside cells in the presence of various host proteins, nucleic acids, and lipids. Thus, viral gene products come into direct contact with these molecules. The replication proteins of tobamovirus participate not only in viral genome replication but also in counterdefense mechanisms against RNA silencing and other plant defense systems. Accumulating evidence indicates that these functions are carried out through interactions with specific host components. Interactions with some cellular factors, however, are inhibitory to virus multiplication and contribute to host range restriction of tobamovirus. The interactions that have positive and negative impacts on virus multiplication should have been maintained and lost, respectively, during adaptation of the viruses to their respective natural hosts. This review lists the host factors that interact with the replication proteins of tobamovirus and discusses how they influence multiplication of the virus.


Journal of Virology | 2012

Crystal structure of the superfamily 1 helicase from tomato mosaic virus

Masaki Nishikiori; Shigeru Sugiyama; Hongyu Xiang; Mayumi Niiyama; Kazuhiro Ishibashi; Tsuyoshi Inoue; Masayuki Ishikawa; Hiroyoshi Matsumura; Etsuko Katoh

ABSTRACT The genomes of the Tomato mosaic virus and many other plant and animal positive-strand RNA viruses of agronomic and medical importance encode superfamily 1 helicases. Although helicases play important roles in viral replication, the crystal structures of viral superfamily 1 helicases have not been determined. Here, we report the crystal structure of a fragment (S666 to Q1116) of the replication protein from Tomato mosaic virus. The structure reveals a novel N-terminal domain tightly associated with a helicase core. The helicase core contains two RecA-like α/β domains without any of the accessory domain insertions that are found in other superfamily 1 helicases. The N-terminal domain contains a flexible loop, a long α-helix, and an antiparallel six-stranded β-sheet. On the basis of the structure, we constructed deletion mutants of the S666-to-Q1116 fragment and performed split-ubiquitin-based interaction assays in Saccharomyces cerevisiae with TOM1 and ARL8, host proteins that are essential for tomato mosaic virus RNA replication. The results suggested that both TOM1 and ARL8 interact with the long α-helix in the N-terminal domain and that TOM1 also interacts with the helicase core. Prediction of secondary structures in other viral superfamily 1 helicases and comparison of those structures with the S666-to-Q1116 structure suggested that these helicases have a similar fold. Our results provide a structural basis of viral superfamily 1 helicases.


Proceedings of the National Academy of Sciences of the United States of America | 2009

An inhibitory interaction between viral and cellular proteins underlies the resistance of tomato to nonadapted tobamoviruses

Kazuhiro Ishibashi; Satoshi Naito; Tetsuo Meshi; Masayuki Ishikawa

Any individual virus can infect only a limited range of hosts, and most plant species are “nonhosts” to a given virus; i.e., all members of the species are insusceptible to the virus. In nonhost plants, the factors that control virus resistance are not genetically tractable, and how the host range of a virus is determined remains poorly understood. Tomato (Solanum lycopersicum) is a nonhost species for Tobacco mild green mosaic virus (TMGMV) and Pepper mild mottle virus (PMMoV), members of the genus Tobamovirus. Previously, we identified Tm-1, a resistance gene of tomato to another tobamovirus, Tomato mosaic virus (ToMV), and found that Tm-1 binds to ToMV replication proteins to inhibit RNA replication. Tm-1 is derived from a wild tomato species, S. habrochaites, and ToMV-susceptible tomato cultivars have the allelic gene tm-1. The tm-1 protein can neither bind to ToMV replication proteins nor inhibit ToMV multiplication. Here, we show that transgenic tobacco plants expressing tm-1 exhibit resistance to TMGMV and PMMoV. The tm-1 protein bound to the replication proteins of TMGMV and PMMoV and inhibited their RNA replication in vitro. In one of the tm-1-expressing tobacco plants, a tm-1-insensitive TMGMV mutant emerged. In tomato protoplasts, this mutant TMGMV multiplied as efficiently as ToMV. However, in tomato plants, the mutant TMGMV multiplied with lower efficiency compared to ToMV and caused systemic necrosis. These results suggest that an inhibitory interaction between the replication proteins and tm-1 underlies a multilayered resistance mechanism to TMGMV in tomato.


PLOS Pathogens | 2012

Coevolution and hierarchical interactions of Tomato mosaic virus and the resistance gene Tm-1.

Kazuhiro Ishibashi; Natsuki Mawatari; Shuhei Miyashita; Hirohisa Kishino; Tetsuo Meshi; Masayuki Ishikawa

During antagonistic coevolution between viruses and their hosts, viruses have a major advantage by evolving more rapidly. Nevertheless, viruses and their hosts coexist and have coevolved, although the processes remain largely unknown. We previously identified Tm-1 that confers resistance to Tomato mosaic virus (ToMV), and revealed that it encodes a protein that binds ToMV replication proteins and inhibits RNA replication. Tm-1 was introgressed from a wild tomato species Solanum habrochaites into the cultivated tomato species Solanum lycopersicum. In this study, we analyzed Tm-1 alleles in S. habrochaites. Although most part of this gene was under purifying selection, a cluster of nonsynonymous substitutions in a small region important for inhibitory activity was identified, suggesting that the region is under positive selection. We then examined the resistance of S. habrochaites plants to ToMV. Approximately 60% of 149 individuals from 24 accessions were resistant to ToMV, while the others accumulated detectable levels of coat protein after inoculation. Unexpectedly, many S. habrochaites plants were observed in which even multiplication of the Tm-1-resistance-breaking ToMV mutant LT1 was inhibited. An amino acid change in the positively selected region of the Tm-1 protein was responsible for the inhibition of LT1 multiplication. This amino acid change allowed Tm-1 to bind LT1 replication proteins without losing the ability to bind replication proteins of wild-type ToMV. The antiviral spectra and biochemical properties suggest that Tm-1 has evolved by changing the strengths of its inhibitory activity rather than diversifying the recognition spectra. In the LT1-resistant S. habrochaites plants inoculated with LT1, mutant viruses emerged whose multiplication was not inhibited by the Tm-1 allele that confers resistance to LT1. However, the resistance-breaking mutants were less competitive than the parental strains in the absence of Tm-1. Based on these results, we discuss possible coevolutionary processes of ToMV and Tm-1.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Replication protein of tobacco mosaic virus cotranslationally binds the 5′ untranslated region of genomic RNA to enable viral replication

Kazue Kawamura-Nagaya; Kazuhiro Ishibashi; Ying-Ping Huang; Shuhei Miyashita; Masayuki Ishikawa

Significance Replication of many positive-strand RNA viruses is cis-preferential: i.e., viral replicase proteins replicate genomic RNA molecules that have served as translation templates for their own synthesis, but not the other molecules in the same cell. Here, we show that tobacco mosaic virus replicase cotranslationally binds the 5′ untranslated region of genomic RNA and that this binding inhibits further translation and leads to genomic RNA replication. Intriguingly, full-length replicase protein could not bind genomic RNA posttranslationally due to autoinhibition by the C-terminal domain. These results reveal an elegant viral strategy to enable cis-preferential replication and phase switching from translation to replication at once. Genomic RNA of positive-strand RNA viruses replicate via complementary (i.e., negative-strand) RNA in membrane-bound replication complexes. Before replication complex formation, virus-encoded replication proteins specifically recognize genomic RNA molecules and recruit them to sites of replication. Moreover, in many of these viruses, selection of replication templates by the replication proteins occurs preferentially in cis. This property is advantageous to the viruses in several aspects of viral replication and evolution, but the underlying molecular mechanisms have not been characterized. Here, we used an in vitro translation system to show that a 126-kDa replication protein of tobacco mosaic virus (TMV), a positive-strand RNA virus, binds a 5′-terminal ∼70-nucleotide region of TMV RNA cotranslationally, but not posttranslationally. TMV mutants that carried nucleotide changes in the 5′-terminal region and showed a defect in the binding were unable to synthesize negative-strand RNA, indicating that this binding is essential for template selection. A C-terminally truncated 126-kDa protein, but not the full-length 126-kDa protein, was able to posttranslationally bind TMV RNA in vitro, suggesting that binding of the 126-kDa protein to the 70-nucleotide region occurs during translation and before synthesis of the C-terminal inhibitory domain. We also show that binding of the 126-kDa protein prevents further translation of the bound TMV RNA. These data provide a mechanistic explanation of how the 126-kDa protein selects replication templates in cis and how fatal collision between translating ribosomes and negative-strand RNA-synthesizing polymerases on the genomic RNA is avoided.


PLOS Biology | 2015

Viruses Roll the Dice: The Stochastic Behavior of Viral Genome Molecules Accelerates Viral Adaptation at the Cell and Tissue Levels

Shuhei Miyashita; Kazuhiro Ishibashi; Hirohisa Kishino; Masayuki Ishikawa

Recent studies on evolutionarily distant viral groups have shown that the number of viral genomes that establish cell infection after cell-to-cell transmission is unexpectedly small (1–20 genomes). This aspect of viral infection appears to be important for the adaptation and survival of viruses. To clarify how the number of viral genomes that establish cell infection is determined, we developed a simulation model of cell infection for tomato mosaic virus (ToMV), a positive-strand RNA virus. The model showed that stochastic processes that govern the replication or degradation of individual genomes result in the infection by a small number of genomes, while a large number of infectious genomes are introduced in the cell. It also predicted two interesting characteristics regarding cell infection patterns: stochastic variation among cells in the number of viral genomes that establish infection and stochastic inequality in the accumulation of their progenies in each cell. Both characteristics were validated experimentally by inoculating tobacco cells with a library of nucleotide sequence–tagged ToMV and analyzing the viral genomes that accumulated in each cell using a high-throughput sequencer. An additional simulation model revealed that these two characteristics enhance selection during tissue infection. The cell infection model also predicted a mechanism that enhances selection at the cellular level: a small difference in the replication abilities of coinfected variants results in a large difference in individual accumulation via the multiple-round formation of the replication complex (i.e., the replication machinery). Importantly, this predicted effect was observed in vivo. The cell infection model was robust to changes in the parameter values, suggesting that other viruses could adopt similar adaptation mechanisms. Taken together, these data reveal a comprehensive picture of viral infection processes including replication, cell-to-cell transmission, and evolution, which are based on the stochastic behavior of the viral genome molecules in each cell.


Journal of Virology | 2013

The Resistance Protein Tm-1 Inhibits Formation of a Tomato Mosaic Virus Replication Protein-Host Membrane Protein Complex

Kazuhiro Ishibashi; Masayuki Ishikawa

ABSTRACT The Tm-1 gene of tomato confers resistance to Tomato mosaic virus (ToMV). Tm-1 encodes a protein that binds ToMV replication proteins and inhibits the RNA-dependent RNA replication of ToMV. The replication proteins of resistance-breaking mutants of ToMV do not bind Tm-1, indicating that the binding is important for inhibition. In this study, we analyzed how Tm-1 inhibits ToMV RNA replication in a cell-free system using evacuolated tobacco protoplast extracts. In this system, ToMV RNA replication is catalyzed by replication proteins bound to membranes, and the RNA polymerase activity is unaffected by treatment with 0.5 M NaCl-containing buffer and remains associated with membranes. We show that in the presence of Tm-1, negative-strand RNA synthesis is inhibited; the replication proteins associate with membranes with binding that is sensitive to 0.5 M NaCl; the viral genomic RNA used as a translation template is not protected from nuclease digestion; and host membrane proteins TOM1, TOM2A, and ARL8 are not copurified with the membrane-bound 130K replication protein. Deletion of the polymerase read-through domain or of the 3′ untranslated region (UTR) of the genome did not prevent the formation of complexes between the 130K protein and the host membrane proteins, the 0.5 M NaCl-resistant binding of the replication proteins to membranes, and the protection of the genomic RNA from nucleases. These results indicate that Tm-1 binds ToMV replication proteins to inhibit key events in replication complex formation on membranes that precede negative-strand RNA synthesis.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Structural basis for the recognition–evasion arms race between Tomato mosaic virus and the resistance gene Tm-1

Kazuhiro Ishibashi; Yuichiro Kezuka; Chihoko Kobayashi; Masahiko Kato; Tsuyoshi Inoue; Takamasa Nonaka; Masayuki Ishikawa; Hiroyoshi Matsumura; Etsuko Katoh

Significance The Red Queen hypothesis proposes that host defense genes evolve to counter the adverse effects of rapidly evolving invasive viruses. Although 3D structures of host–viral protein complexes have provided great insights into the molecular conflicts between them, a single structure represents only an evolutionary snapshot. Here we present the atomic details of the step-by-step arms race between tomato mosaic virus replication protein and the host inhibitor protein Tm-1, in which host recognition of a viral molecule, viral adaptive evasion of the recognition, host counteradaptation, and viral counter-counteradaptation are depicted by determination of the complex structures of Tm-1 variants and the viral protein and by biochemical analyses and molecular dynamics simulations of the interactions between these proteins. The tomato mosaic virus (ToMV) resistance gene Tm-1 encodes a protein that shows no sequence homology to functionally characterized proteins. Tm-1 binds ToMV replication proteins and thereby inhibits replication complex formation. ToMV mutants that overcome this resistance have amino acid substitutions in the helicase domain of the replication proteins (ToMV-Hel). A small region of Tm-1 in the genome of the wild tomato Solanum habrochaites has been under positive selection during its antagonistic coevolution with ToMV. Here we report crystal structures for the N-terminal inhibitory domains of Tm-1 and a natural Tm-1 variant with an I91-to-T substitution that has a greater ability to inhibit ToMV RNA replication and their complexes with ToMV-Hel. Each complex contains a Tm-1 dimer and two ToMV-Hel monomers with the interfaces between Tm-1 and ToMV-Hel bridged by ATP. Residues in ToMV-Hel and Tm-1 involved in antagonistic coevolution are found at the interface. The structural differences between ToMV-Hel in its free form and in complex with Tm-1 suggest that Tm-1 affects nucleoside triphosphatase activity of ToMV-Hel, and this effect was confirmed experimentally. Molecular dynamics simulations of complexes formed by Tm-1 with ToMV-Hel variants showed how the amino acid changes in ToMV-Hel impair the interaction with Tm-1 to overcome the resistance. With these findings, together with the biochemical properties of the interactions between ToMV-Hel and Tm-1 variants and effects of the mutations in the polymorphic residues of Tm-1, an atomic view of a step-by-step coevolutionary arms race between a plant resistance protein and a viral protein emerges.


Journal of Virology | 2011

Gaining Replicability in a Nonhost Compromises the Silencing Suppression Activity of Tobacco Mild Green Mosaic Virus in a Host

Kazuhiro Ishibashi; Tetsuo Meshi; Masayuki Ishikawa

ABSTRACT Natural isolates of Tobacco mild green mosaic virus (TMGMV) fail to infect tomato because the tomato tm-1 protein binds to the replication proteins of TMGMV and prevents RNA replication. Previously, we isolated a TMGMV mutant that overcomes tm-1-mediated resistance and multiplies in tomato plants. Here, we show that the causal mutations in the replication protein gene that abolish the interaction with tm-1 reduce its ability to suppress RNA silencing in host plant Nicotiana benthamiana. The results suggest that the multifunctionality of the replication proteins is an evolutionary constraint of tobamoviruses that restricts their host ranges.

Collaboration


Dive into the Kazuhiro Ishibashi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge