Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Etta D. Pisano is active.

Publication


Featured researches published by Etta D. Pisano.


CA: A Cancer Journal for Clinicians | 2007

American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography.

Carla Boetes; Wylie Burke; Steven E. Harms; Martin O. Leach; Constance D. Lehman; Elizabeth A. Morris; Etta D. Pisano; Mitchell D. Schnall; Stephen F. Sener; Robert A. Smith; Ellen Warner; Martin J. Yaffe; Kimberly S. Andrews; Christy A. Russell

New evidence on breast Magnetic Resonance Imaging (MRI) screening has become available since the American Cancer Society (ACS) last issued guidelines for the early detection of breast cancer in 2003. A guideline panel has reviewed this evidence and developed new recommendations for women at different defined levels of risk. Screening MRI is recommended for women with an approximately 20–25% or greater lifetime risk of breast cancer, including women with a strong family history of breast or ovarian cancer and women who were treated for Hodgkin disease. There are several risk subgroups for which the available data are insufficient to recommend for or against screening, including women with a personal history of breast cancer, carcinoma in situ, atypical hyperplasia, and extremely dense breasts on mammography. Diagnostic uses of MRI were not considered to be within the scope of this review.


JAMA | 2008

Combined Screening With Ultrasound and Mammography vs Mammography Alone in Women at Elevated Risk of Breast Cancer

Wendie A. Berg; Jeffrey D. Blume; Jean Cormack; Ellen B. Mendelson; Daniel Lehrer; Marcela Böhm-Vélez; Etta D. Pisano; Roberta A. Jong; W. Phil Evans; Marilyn J. Morton; Mary C. Mahoney; Linda Hovanessian Larsen; Richard G. Barr; Dione M. Farria; Helga S. Marques; Karan Boparai

CONTEXT Screening ultrasound may depict small, node-negative breast cancers not seen on mammography. OBJECTIVE To compare the diagnostic yield, defined as the proportion of women with positive screen test results and positive reference standard, and performance of screening with ultrasound plus mammography vs mammography alone in women at elevated risk of breast cancer. DESIGN, SETTING, AND PARTICIPANTS From April 2004 to February 2006, 2809 women, with at least heterogeneously dense breast tissue in at least 1 quadrant, were recruited from 21 sites to undergo mammographic and physician-performed ultrasonographic examinations in randomized order by a radiologist masked to the other examination results. Reference standard was defined as a combination of pathology and 12-month follow-up and was available for 2637 (96.8%) of the 2725 eligible participants. MAIN OUTCOME MEASURES Diagnostic yield, sensitivity, specificity, and diagnostic accuracy (assessed by the area under the receiver operating characteristic curve) of combined mammography plus ultrasound vs mammography alone and the positive predictive value of biopsy recommendations for mammography plus ultrasound vs mammography alone. RESULTS Forty participants (41 breasts) were diagnosed with cancer: 8 suspicious on both ultrasound and mammography, 12 on ultrasound alone, 12 on mammography alone, and 8 participants (9 breasts) on neither. The diagnostic yield for mammography was 7.6 per 1000 women screened (20 of 2637) and increased to 11.8 per 1000 (31 of 2637) for combined mammography plus ultrasound; the supplemental yield was 4.2 per 1000 women screened (95% confidence interval [CI], 1.1-7.2 per 1000; P = .003 that supplemental yield is 0). The diagnostic accuracy for mammography was 0.78 (95% CI, 0.67-0.87) and increased to 0.91 (95% CI, 0.84-0.96) for mammography plus ultrasound (P = .003 that difference is 0). Of 12 supplemental cancers detected by ultrasound alone, 11 (92%) were invasive with a median size of 10 mm (range, 5-40 mm; mean [SE], 12.6 [3.0] mm) and 8 of the 9 lesions (89%) reported had negative nodes. The positive predictive value of biopsy recommendation after full diagnostic workup was 19 of 84 for mammography (22.6%; 95% CI, 14.2%-33%), 21 of 235 for ultrasound (8.9%, 95% CI, 5.6%-13.3%), and 31 of 276 for combined mammography plus ultrasound (11.2%; 95% CI. 7.8%-15.6%). CONCLUSIONS Adding a single screening ultrasound to mammography will yield an additional 1.1 to 7.2 cancers per 1000 high-risk women, but it will also substantially increase the number of false positives. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00072501.


Physics in Medicine and Biology | 1997

Diffraction enhanced x-ray imaging

Dean Chapman; W. Thomlinson; R. E. Johnston; David B. Washburn; Etta D. Pisano; Zhong Zhong; R Menk; Fulvia Arfelli; D. E. Sayers

Diffraction enhanced imaging is a new x-ray radiographic imaging modality using monochromatic x-rays from a synchrotron which produces images of thick absorbing objects that are almost completely free of scatter. They show dramatically improved contrast over standard imaging applied to the same phantom. The contrast is based not only on attenuation but also the refraction and diffraction properties of the sample. This imaging method may improve image quality for medical applications, industrial radiography for non-destructive testing and x-ray computed tomography.


JAMA | 2012

Detection of Breast Cancer with Addition of Annual Screening Ultrasound or a Single Screening MRI to Mammography in Women with Elevated Breast Cancer Risk

Wendie A. Berg; Zheng Zhang; Daniel Lehrer; Roberta A. Jong; Etta D. Pisano; Richard G. Barr; Marcela Böhm-Vélez; Mary C. Mahoney; W. Phil Evans; Linda Hovanessian Larsen; Marilyn J. Morton; Ellen B. Mendelson; Dione M. Farria; Jean Cormack; Helga S. Marques; Amanda M. Adams; Nolin M. Yeh; Glenna J. Gabrielli

CONTEXT Annual ultrasound screening may detect small, node-negative breast cancers that are not seen on mammography. Magnetic resonance imaging (MRI) may reveal additional breast cancers missed by both mammography and ultrasound screening. OBJECTIVE To determine supplemental cancer detection yield of ultrasound and MRI in women at elevated risk for breast cancer. DESIGN, SETTING, AND PARTICIPANTS From April 2004-February 2006, 2809 women at 21 sites with elevated cancer risk and dense breasts consented to 3 annual independent screens with mammography and ultrasound in randomized order. After 3 rounds of both screenings, 612 of 703 women who chose to undergo an MRI had complete data. The reference standard was defined as a combination of pathology (biopsy results that showed in situ or infiltrating ductal carcinoma or infiltrating lobular carcinoma in the breast or axillary lymph nodes) and 12-month follow-up. MAIN OUTCOME MEASURES Cancer detection rate (yield), sensitivity, specificity, positive predictive value (PPV3) of biopsies performed and interval cancer rate. RESULTS A total of 2662 women underwent 7473 mammogram and ultrasound screenings, 110 of whom had 111 breast cancer events: 33 detected by mammography only, 32 by ultrasound only, 26 by both, and 9 by MRI after mammography plus ultrasound; 11 were not detected by any imaging screen. Among 4814 incidence screens in the second and third years combined, 75 women were diagnosed with cancer. Supplemental incidence-screening ultrasound identified 3.7 cancers per 1000 screens (95% CI, 2.1-5.8; P < .001). Sensitivity for mammography plus ultrasound was 0.76 (95% CI, 0.65-0.85); specificity, 0.84 (95% CI, 0.83-0.85); and PPV3, 0.16 (95% CI, 0.12-0.21). For mammography alone, sensitivity was 0.52 (95% CI, 0.40-0.64); specificity, 0.91 (95% CI, 0.90-0.92); and PPV3, 0.38 (95% CI, 0.28-0.49; P < .001 all comparisons). Of the MRI participants, 16 women (2.6%) had breast cancer diagnosed. The supplemental yield of MRI was 14.7 per 1000 (95% CI, 3.5-25.9; P = .004). Sensitivity for MRI and mammography plus ultrasound was 1.00 (95% CI, 0.79-1.00); specificity, 0.65 (95% CI, 0.61-0.69); and PPV3, 0.19 (95% CI, 0.11-0.29). For mammography and ultrasound, sensitivity was 0.44 (95% CI, 0.20-0.70, P = .004); specificity 0.84 (95% CI, 0.81-0.87; P < .001); and PPV3, 0.18 (95% CI, 0.08 to 0.34; P = .98). The number of screens needed to detect 1 cancer was 127 (95% CI, 99-167) for mammography; 234 (95% CI, 173-345) for supplemental ultrasound; and 68 (95% CI, 39-286) for MRI after negative mammography and ultrasound results. CONCLUSION The addition of screening ultrasound or MRI to mammography in women at increased risk of breast cancer resulted in not only a higher cancer detection yield but also an increase in false-positive findings. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00072501.


Radiology | 2008

Diagnostic Accuracy of Digital versus Film Mammography: Exploratory Analysis of Selected Population Subgroups in DMIST

Etta D. Pisano; R. Edward Hendrick; Martin J. Yaffe; Janet K. Baum; Suddhasatta Acharyya; Jean Cormack; Lucy A. Hanna; Emily F. Conant; Laurie L. Fajardo; Lawrence W. Bassett; Carl J. D'Orsi; Roberta A. Jong; Murray Rebner; Anna N. A. Tosteson; Constantine Gatsonis

PURPOSE To retrospectively compare the accuracy of digital versus film mammography in population subgroups of the Digital Mammographic Imaging Screening Trial (DMIST) defined by combinations of age, menopausal status, and breast density, by using either biopsy results or follow-up information as the reference standard. MATERIALS AND METHODS DMIST included women who underwent both digital and film screening mammography. Institutional review board approval at all participating sites and informed consent from all participating women in compliance with HIPAA was obtained for DMIST and this retrospective analysis. Areas under the receiver operating characteristic curve (AUCs) for each modality were compared within each subgroup evaluated (age < 50 vs 50-64 vs >or= 65 years, dense vs nondense breasts at mammography, and pre- or perimenopausal vs postmenopausal status for the two younger age cohorts [10 new subgroups in toto]) while controlling for multiple comparisons (P < .002 indicated a significant difference). All DMIST cancers were evaluated with respect to mammographic detection method (digital vs film vs both vs neither), mammographic lesion type (mass, calcifications, or other), digital machine type, mammographic and pathologic size and diagnosis, existence of prior mammographic study at time of interpretation, months since prior mammographic study, and compressed breast thickness. RESULTS Thirty-three centers enrolled 49 528 women. Breast cancer status was determined for 42,760 women, the group included in this study. Pre- or perimenopausal women younger than 50 years who had dense breasts at film mammography comprised the only subgroup for which digital mammography was significantly better than film (AUCs, 0.79 vs 0.54; P = .0015). Breast Imaging Reporting and Data System-based sensitivity in this subgroup was 0.59 for digital and 0.27 for film mammography. AUCs were not significantly different in any of the other subgroups. For women aged 65 years or older with fatty breasts, the AUC showed a nonsignificant tendency toward film being better than digital mammography (AUCs, 0.88 vs 0.70; P = .0025). CONCLUSION Digital mammography performed significantly better than film for pre- and perimenopausal women younger than 50 years with dense breasts, but film tended nonsignificantly to perform better for women aged 65 years or older with fatty breasts.


Cancer | 2005

Screening women at high risk for breast cancer with mammography and magnetic resonance imaging

Constance D. Lehman; Jeffrey D. Blume; Paul T. Weatherall; David Thickman; Nola M. Hylton; Ellen Warner; Etta D. Pisano; Stuart J. Schnitt; Constantine Gatsonis; Mitchell D. Schnall

The authors compared the performance of screening mammography versus magnetic resonance imaging (MRI) in women at genetically high risk for breast cancer.


international conference on computer graphics and interactive techniques | 1996

Technologies for augmented reality systems: realizing ultrasound-guided needle biopsies

Andrei State; Mark A. Livingston; William F. Garrett; Gentaro Hirota; Etta D. Pisano; Henry Fuchs

We present a real-time stereoscopic video-see-through augmented reality (AR) system applied to the medical procedure known as ultrasound-guided needle biopsy of the breast. The AR system was used by a physician during procedures on breast models and during non-invasive examinations of human subjects. The system merges rendered live ultrasound data and geometric elements with stereo images of the patient acquired through head-mounted video cameras and presents these merged images to the physician in a head-mounted display. The physician sees a volume visualization of the ultrasound data directly under the ultrasound probe, properly registered within the patient and with the biopsy needle. Using this system, a physician successfully guided a needle into an artificial tumor within a training phantom of a human breast. We discuss the construction of the AR system and the issues and decisions which led to the system architecture and the design of the video see-through head-mounted display. We designed methods to properly resolve occlusion of the real and synthetic image elements. We developed techniques for realtime volume visualization of timeand position-varying ultrasound data. We devised a hybrid tracking system which achieves improved registration of synthetic and real imagery and we improved on previous techniques for calibration of a magnetic tracker. CR


Radiology | 2012

Locally Advanced Breast Cancer: MR Imaging for Prediction of Response to Neoadjuvant Chemotherapy—Results from ACRIN 6657/I-SPY TRIAL

Nola M. Hylton; Jeffrey D. Blume; Wanda K. Bernreuter; Etta D. Pisano; Mark A. Rosen; Elizabeth A. Morris; Paul T. Weatherall; Constance D. Lehman; Gillian M. Newstead; Sandra M. Polin; Helga S. Marques; Laura Esserman; Mitchell D. Schnall

PURPOSE To compare magnetic resonance (MR) imaging findings and clinical assessment for prediction of pathologic response to neoadjuvant chemotherapy (NACT) in patients with stage II or III breast cancer. MATERIALS AND METHODS The HIPAA-compliant protocol and the informed consent process were approved by the American College of Radiology Institutional Review Board and local-site institutional review boards. Women with invasive breast cancer of 3 cm or greater undergoing NACT with an anthracycline-based regimen, with or without a taxane, were enrolled between May 2002 and March 2006. MR imaging was performed before NACT (first examination), after one cycle of anthracyline-based treatment (second examination), between the anthracycline-based regimen and taxane (third examination), and after all chemotherapy and prior to surgery (fourth examination). MR imaging assessment included measurements of tumor longest diameter and volume and peak signal enhancement ratio. Clinical size was also recorded at each time point. Change in clinical and MR imaging predictor variables were compared for the ability to predict pathologic complete response (pCR) and residual cancer burden (RCB). Univariate and multivariate random-effects logistic regression models were used to characterize the ability of tumor response measurements to predict pathologic outcome, with area under the receiver operating characteristic curve (AUC) used as a summary statistic. RESULTS Data in 216 women (age range, 26-68 years) with two or more imaging time points were analyzed. For prediction of both pCR and RCB, MR imaging size measurements were superior to clinical examination at all time points, with tumor volume change showing the greatest relative benefit at the second MR imaging examination. AUC differences between MR imaging volume and clinical size predictors at the early, mid-, and posttreatment time points, respectively, were 0.14, 0.09, and 0.02 for prediction of pCR and 0.09, 0.07, and 0.05 for prediction of RCB. In multivariate analysis, the AUC for predicting pCR at the second imaging examination increased from 0.70 for volume alone to 0.73 when all four predictor variables were used. Additional predictive value was gained with adjustments for age and race. CONCLUSION MR imaging findings are a stronger predictor of pathologic response to NACT than clinical assessment, with the greatest advantage observed with the use of volumetric measurement of tumor response early in treatment.


Journal of Digital Imaging | 1998

Contrast Limited Adaptive Histogram Equalization image processing to improve the detection of simulated spiculations in dense mammograms

Etta D. Pisano; Shuquan Zong; Bradley M. Hemminger; Marla DeLuca; R. Eugene Johnston; Keith E. Muller; M. Patricia Braeuning; Stephen M. Pizer

The purpose of this project was to determine whether Contrast Limited Adaptive Histogram Equalization (CLAHE) improves detection of simulated spiculations in dense mammograms. Lines simulating the appearance of spiculations, a common marker of malignancy when visualized with masses, were embedded in dense mammograms digitized at 50 micron pixels, 12 bits deep. Film images with no CLAHE applied were compared to film images with nine different combinations of clip levels and region sizes applied. A simulated spiculation was embedded in a background of dense breast tissue, with the orientation of the spiculation varied. The key variables involved in each trial included the orientation of the spiculation, contrast level of the spiculation and the CLAHE settings applied to the image. Combining the 10 CLAHE conditions, 4 contrast levels and 4 orientations gave 160 combinations. The trials were constructed by pairing 160 combinations of key variables with 40 backgrounds. Twenty student observers were asked to detect the orientation of the spiculation in the image. There was a statistically significant improvement in detection performance for spiculations with CLAHE over unenhanced images when the region size was set at 32 with a clip level of 2, and when the region size was set at 32 with a clip level of 4. The selected CLAHE settings should be tested in the clinic with digital mammograms to determine whether detection of spiculations associated with masses detected at mammography can be improved.


Osteoarthritis and Cartilage | 2002

DIFFRACTION ENHANCED X-RAY IMAGING OF ARTICULAR CARTILAGE

Leroy Dean Chapman; M. Hasnah; O. Oltulu; Zhong Zhong; Juergen A. Mollenhauer; Carol Muehleman; Klaus E. Kuettner; Matthias Aurich; Etta D. Pisano; R. Johnston; William Thomlinson; D. E. Sayers

OBJECTIVE To introduce a novel X-ray technology, diffraction-enhanced X-ray imaging (DEI), in its early stages of development, for the imaging of articular cartilage. DESIGN Disarticulated and/or intact human knee and talocrural joints displaying both undegenerated and degenerated articular cartilage were imaged with DEI. A series of three silicon crystals were used to produce a highly collimated monochromatic X-ray beam to achieve scatter-rejection at the microradian level. The third crystal (analyser) was set at different angles resulting in images displaying different characteristics. Once the diffraction enhanced (DE) images were obtained, they were compared to gross and histological examination. RESULTS Articular cartilage in both disarticulated and intact joints could be visualized through DEI. For each specimen, DE images were reflective of their gross and histological appearance. For each different angle of the analyser crystal, there was a slight difference in appearance in the specimen image, with certain characteristics changing in their contrast intensity as the analyser angle changed. CONCLUSIONS DEI is capable of imaging articular cartilage in disarticulated, as well as in intact joints. Gross cartilage defects, even at early stages of development, can be visualized due to a combination of high spatial resolution and detection of X-ray refraction, extinction and absorption patterns. Furthermore, DE images displaying contrast heterogeneities indicative of cartilage degeneration correspond to the degeneration detected by gross and histological examination.

Collaboration


Dive into the Etta D. Pisano's collaboration.

Top Co-Authors

Avatar

Elodia B. Cole

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Zhong Zhong

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Cherie M. Kuzmiak

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher Parham

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin J. Yaffe

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcia Koomen

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge