Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eugen Domann is active.

Publication


Featured researches published by Eugen Domann.


Science | 2001

Comparative Genomics of Listeria Species

Philippe Glaser; L Frangeul; Carmen Buchrieser; C Rusniok; A Amend; F Baquero; Patrick Berche; H Bloecker; P Brandt; Trinad Chakraborty; A Charbit; F Chetouani; E Couvé; A de Daruvar; P Dehoux; Eugen Domann; Gustavo Domínguez-Bernal; E Duchaud; L Durant; O Dussurget; K-D Entian; H Fsihi; F García-del Portillo; P Garrido; L Gautier; Werner Goebel; N Gomez-Lopez; Torsten Hain; J Hauf; D Jackson

Listeria monocytogenes is a food-borne pathogen with a high mortality rate that has also emerged as a paradigm for intracellular parasitism. We present and compare the genome sequences of L. monocytogenes (2,944,528 base pairs) and a nonpathogenic species, L. innocua (3,011,209 base pairs). We found a large number of predicted genes encoding surface and secreted proteins, transporters, and transcriptional regulators, consistent with the ability of both species to adapt to diverse environments. The presence of 270 L. monocytogenes and 149 L. innocua strain-specific genes (clustered in 100 and 63 islets, respectively) suggests that virulence in Listeria results from multiple gene acquisition and deletion events.


The EMBO Journal | 1997

A novel proline‐rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family

Kirsten Niebuhr; Frank Ebel; Ronald Frank; Matthias Reinhard; Eugen Domann; Uwe D. Carl; Ulrich Walter; Frank B. Gertler; Jürgen Wehland; Trinad Chakraborty

The ActA protein of the intracellular pathogen Listeria monocytogenes induces a dramatic reorganization of the actin‐based cytoskeleton. Two profilin binding proteins, VASP and Mena, are the only cellular proteins known so far to bind directly to ActA. This interaction is mediated by a conserved module, the EVH1 domain. We identify E/DFPPPPXD/E, a motif repeated 4‐fold within the primary sequence of ActA, as the core of the consensus ligand for EVH1 domains. This motif is also present and functional in at least two cellular proteins, zyxin and vinculin, which are in this respect major eukaryotic analogs of ActA. The functional importance of the novel protein–protein interaction was examined in the Listeria system. Removal of EVH1 binding sites on ActA reduces bacterial motility and strongly attenuates Listeria virulence. Taken together we demonstrate that ActA–EVH1 binding is a paradigm for a novel class of eukaryotic protein–protein interactions involving a proline‐rich ligand that is clearly different from those described for SH3 and WW/WWP domains. This class of interactions appears to be of general importance for processes dependent on rapid actin remodeling.


The EMBO Journal | 1992

A novel bacterial virulence gene in Listeria monocytogenes required for host cell microfilament interaction with homology to the proline-rich region of vinculin.

Eugen Domann; Jürgen Wehland; Rohde M; S Pistor; Hartl M; Goebel W; Leimeister-Wächter M; Wuenscher M; Trinad Chakraborty

The ability of Listeria monocytogenes to move within the cytosol of infected cells and their ability to infect adjacent cells is important in the development of infection foci leading to systemic disease. Interaction with the host cell microfilament system, particularly actin, appears to be the basis for propelling the bacteria through the host cell cytoplasm to generate the membraneous protrusions whereby cell‐to‐cell spread occurs. The actA locus of L.monocytogenes encodes a 90 kDa polypeptide that is a key component of bacterium‐host cell microfilament interactions. Cloning of the actA gene allowed the identification of its gene product and permitted construction of an isogenic mutant strain defective in the production of the ActA polypeptide. Sequencing of the region encoding the actA gene revealed that it was located region encoding the actA gene revealed that it was located between the metalloprotease (mpl) and phosphatidylcholine‐specific phospholipase C (plcB) genes. Within the cytoplasm of the infected cells, the mutant strain grew as microcolonies, was unable to accumulate actin following escape from the phagocytic compartment and was incapable of infecting adjacent cells. It was also dramatically less virulent, demonstrating that the capacity to move intracellularly and spread intercellularly is a key determinant of L.monocytogenes virulence. Like all other virulence factors described for this microorganism, expression of the ActA polypeptide is controlled by the PrfA regulator protein. The primary sequence of this protein appeared to be unique with no extended homology to known protein sequences. However, an internal repeat sequence showed strong regional homology to a sequence from within the hinge region of the cytoskeletal protein vinculin.


Infection and Immunity | 2006

Intracellular Gene Expression Profile of Listeria monocytogenes

Som S. Chatterjee; Hamid Hossain; Sonja Otten; Carsten Kuenne; Katja Kuchmina; Silke Machata; Eugen Domann; Trinad Chakraborty; Torsten Hain

ABSTRACT Listeria monocytogenes is a gram-positive, food-borne microorganism responsible for invasive infections with a high overall mortality. L. monocytogenes is among the very few microorganisms that can induce uptake into the host cell and subsequently enter the host cell cytosol by breaching the vacuolar membrane. We infected the murine macrophage cell line P388D1 with L. monocytogenes strain EGD-e and examined the gene expression profile of L. monocytogenes inside the vacuolar and cytosolic environments of the host cell by using whole-genome microarray and mutant analyses. We found that ∼17% of the total genome was mobilized to enable adaptation for intracellular growth. Intracellularly expressed genes showed responses typical of glucose limitation within bacteria, with a decrease in the amount of mRNA encoding enzymes in the central metabolism and a temporal induction of genes involved in alternative-carbon-source utilization pathways and their regulation. Adaptive intracellular gene expression involved genes that are associated with virulence, the general stress response, cell division, and changes in cell wall structure and included many genes with unknown functions. A total of 41 genes were species specific, being absent from the genome of the nonpathogenic Listeria innocua CLIP 11262 strain. We also detected 25 genes that were strain specific, i.e., absent from the genome of the previously sequenced L. monocytogenes F2365 serotype 4b strain, suggesting heterogeneity in the gene pool required for intracellular survival of L. monocytogenes in host cells. Overall, our study provides crucial insights into the strategy of intracellular survival and measures taken by L. monocytogenes to escape the host cell responses.


Applied and Environmental Microbiology | 2008

Rapid Identification and Typing of Listeria Species by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry†

Sukhadeo B. Barbuddhe; Thomas Maier; Gerold Schwarz; Markus Kostrzewa; Herbert Hof; Eugen Domann; Trinad Chakraborty; Torsten Hain

ABSTRACT Listeria monocytogenes is a food-borne pathogen that is the causative agent of human listeriosis, an opportunistic infection that primarily infects pregnant women and immunologically compromised individuals. Rapid, accurate discrimination between Listeria strains is essential for appropriate therapeutic management and timely intervention for infection control. A rapid method involving matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) that shows promise for identification of Listeria species and typing and even allows for differentiation at the level of clonal lineages among pathogenic strains of L. monocytogenes is presented. A total of 146 strains of different Listeria species and serotypes as well as clinical isolates were analyzed. The method was compared with the pulsed-field gel electrophoresis analysis of 48 Listeria strains comprising L. monocytogenes strains isolated from food-borne epidemics and sporadic cases, isolates representing different serotypes, and a number of Listeria strains whose genomes have been completely sequenced. Following a short inactivation/extraction procedure, cell material from a bacterial colony was deposited on a sample target, dried, overlaid with a matrix necessary for the MALDI process, and analyzed by MALDI-TOF MS. This technique examines the chemistry of major proteins, yielding profile spectra consisting of a series of peaks, a characteristic “fingerprint” mainly derived from ribosomal proteins. Specimens can be prepared in a few minutes from plate or liquid cultures, and a spectrum can be obtained within 1 minute. Mass spectra derived from Listeria isolates showed characteristic peaks, conserved at both the species and lineage levels. MALDI-TOF MS fingerprinting may have potential for Listeria identification and subtyping and may improve infection control measures.


The EMBO Journal | 1995

A focal adhesion factor directly linking intracellularly motile Listeria monocytogenes and Listeria ivanovii to the actin-based cytoskeleton of mammalian cells.

Trinad Chakraborty; Frank Ebel; Eugen Domann; Kirsten Niebuhr; B Gerstel; S Pistor; C J Temm-Grove; Brigitte M. Jockusch; Matthias Reinhard; Ulrich Walter

The surface‐bound ActA polypeptide of the intracellular bacterial pathogen Listeria monocytogenes is the sole listerial factor needed for recruitment of host actin filaments by intracellularly motile bacteria. Here we report that following Listeria infection the host vasodilator‐stimulated phosphoprotein (VASP), a microfilament‐ and focal adhesion‐associated substrate of both the cAMP‐ and cGMP‐dependent protein kinases, accumulates on the surface of intracytoplasmic bacteria prior to the detection of F‐actin ‘clouds’. VASP remains associated with the surface of highly motile bacteria, where it is polarly located, juxtaposed between one extremity of the bacterial surface and the front of the actin comet tail. Since actin filament polymerization occurs only at the very front of the tail, VASP exhibits properties of a host protein required to promote actin polymerization. Purified VASP binds directly to the ActA polypeptide in vitro. A ligand‐overlay blot using purified radiolabelled VASP enabled us to identify the ActA homologue of the related intracellular motile pathogen, Listeria ivanovii, as a protein with a molecular mass of approximately 150 kDa. VASP also associates with actin filaments recruited by another intracellularly motile bacterial pathogen, Shigella flexneri. Hence, by the simple expedient of expressing surface‐bound attractor molecules, bacterial pathogens effectively harness cytoskeletal components to achieve intracellular movement.


Cell | 2002

Structure of Internalin, a Major Invasion Protein of Listeria monocytogenes, in Complex with Its Human Receptor E-Cadherin

Wolf-Dieter Schubert; Claus Urbanke; Thilo Ziehm; Viola Beier; Matthias P. Machner; Eugen Domann; Jürgen Wehland; Trinad Chakraborty; Dirk W. Heinz

Listeria monocytogenes, a food-borne bacterial pathogen, enters mammalian cells by inducing its own phagocytosis. The listerial protein internalin (InlA) mediates bacterial adhesion and invasion of epithelial cells in the human intestine through specific interaction with its host cell receptor E-cadherin. We present the crystal structures of the functional domain of InlA alone and in a complex with the extracellular, N-terminal domain of human E-cadherin (hEC1). The leucine rich repeat (LRR) domain of InlA surrounds and specifically recognizes hEC1. Individual interactions were probed by mutagenesis and analytical ultracentrifugation. These include Pro16 of hEC1, a major determinant for human susceptibility to L. monocytogenes infection that is essential for intermolecular recognition. Our studies reveal the structural basis for host tro-pism of this bacterium and the molecular deception L. monocytogenes employs to exploit the E-cadherin system.


Molecular Microbiology | 1996

Apoptosis of mouse dendritic cells is triggered by listeriolysin, the major virulence determinant of Listeria monocytogenes.

Carlos A. Guzmán; Eugen Domann; Manfred Ronde; Dunja Bruder; Ayub Darji; Siegfried Weiss; Jürgen Wehland; Trinad Chakraborty; Kenneth N. Timmis

Infection of a murine‐spleen dendritic cell line by Listeria monocytogenes was found to induce cell death through apoptosis. To characterize the bacterial product(s) involved in induction of apoptosis, dendritic cells were infected with the L. monocytogenes EGD strain and several isogenic mutants deficient in the production of individual listerial virulence factors. The ability to induce cellular apoptosis was retained by all mutants tested, except the prfA and Δhly mutants, both of which are unable to produce listeriolysin. Apoptosis was also induced by purified listeriolysin suggesting that this protein directly induces apoptosis. Purified recombinant listeriolysins rendered either weakly haemolytic by a C‐484 to S mutation, or non‐haemolytic by a W‐491 to A mutation exhibited little or no capacity to induce apoptosis, indicating that both activities are associated within the same protein region. Treatment with purified listeriolysin or L. monocytogenes infection also triggers apoptosis in explanted bone‐marrow dendritic cells. Thus invasion of dendritic cells by L. monocytogenes, which results in cell death, may play an important role in the pathogenesis of listerial infections by impairing immune responses, hindering bacterial clearance and promoting spread of the infection.


Molecular Microbiology | 2002

INTERNALIN B IS ESSENTIAL FOR ADHESION AND MEDIATES THE INVASION OF LISTERIA MONOCYTOGENES INTO HUMAN ENDOTHELIAL CELLS

Shreemanta K. Parida; Eugen Domann; Manfred Rohde; Simone Müller; Ayub Darji; Torsten Hain; Jürgen Wehland; Trinad Chakraborty

Listeria monocytogenes causes rhombencephalitis in humans and animals and also affects the fetus in utero, causing disseminated sepsis. In both instances, the infection occurs by the crossing of endothelial cells lining a physiological barrier, the blood–brain barrier or the transplacental barrier. In this study, the ability of L. monocytogenes wild‐type EGD to invade human umbilical vein endothelial cells (HUVECs) was evaluated using wild‐type bacteria and isogenic Listeria mutants. Here, we show that invasion of HUVECs by L. monocytogenes is dependent on the expression of the internalin B gene product. This was demonstrated in several ways. First, L. monocytogenes strains lacking the inlB gene did not invade HUVECs. Secondly, avid invasion was obtained when a strain deleted for inlAB was complemented with a plasmid harbouring inlB only, whereas strains expressing inlA did not enter HUVECs. Thirdly, entry of wild‐type EGD could be blocked effectively with antibodies to InlB. Fourthly, cell binding assays and flow cytometry with HUVECs showed binding of purified InlB, but not InlA, suggesting a tropism of InlB for this cell type. Finally, physical association of purified native InlB with the surface of non‐invasive mutants dramatically increased their ability to invade HUVECs. In laser‐scanning confocal microscopy, binding of InlB was observed as focal and localized patches on the cell surface of HUVECs. Qualitative examination of the entry process by scanning electron microscopy revealed that both wild‐type EGD and a recombinant strain overexpressing only InlB enter HUVECs in a similar fashion. The entry process was polarized, involved single bacteria and occurred over the entire surface of endothelial cells.


The EMBO Journal | 1994

The ActA protein of Listeria monocytogenes acts as a nucleator inducing reorganization of the actin cytoskeleton.

S Pistor; Trinad Chakraborty; Kirsten Niebuhr; Eugen Domann; Jürgen Wehland

Listeria monocytogenes, a facultative intracellular pathogen, employs actin and other microfilament‐associated proteins to move through the host cell cytoplasm. Isogenic mutants of L. monocytogenes lacking the surface‐bound ActA polypeptide no longer interact with cytoskeletal elements and are, as a consequence, non‐motile (Domann et al., 1992, EMBO J., 11, 1981‐1990; Kocks et al., 1992, Cell, 68, 521‐531). To investigate the interaction of ActA with the microfilament system in the absence of other bacterial factors, the listerial actA gene was expressed in eukaryotic cells. Immunofluorescence studies revealed that the complete ActA, including its C‐terminally located bacterial membrane anchor, colocalized with mitochondria in transfected cells. When targeted to mitochondria, the ActA polypeptide recruited actin and alpha‐actinin to these cellular organelles with concomitant reorganization of the microfilament system. Removal of the internal proline‐rich repeat region of ActA completely abrogated interaction with cytoskeletal components. Our results identify the ActA polypeptide as a nucleator of the actin cytoskeleton and provide the first insights into the molecular nature of such controlling elements in microfilament organization.

Collaboration


Dive into the Eugen Domann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michaela Leimeister-Wachter

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge