Eugen F. Mesaros
Cephalon
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eugen F. Mesaros.
Journal of Medicinal Chemistry | 2011
Gregory R. Ott; Gregory J. Wells; Tho V. Thieu; Matthew R. Quail; Joseph G. Lisko; Eugen F. Mesaros; Diane E. Gingrich; Arup K. Ghose; Weihua Wan; Lihui Lu; Mangeng Cheng; Mark S. Albom; Thelma S. Angeles; Zeqi Huang; Lisa D. Aimone; Mark A. Ator; Bruce Ruggeri; Bruce D. Dorsey
A novel 2,7-disubstituted-pyrrolo[2,1-f][1,2,4]triazine scaffold has been designed as a new kinase inhibitor platform mimicking the bioactive conformation of the well-known diaminopyrimidine motif. The design, synthesis, and validation of this new pyrrolo[2,1-f][1,2,4]triazine scaffold will be described for inhibitors of anaplastic lymphoma kinase (ALK). Importantly, incorporation of appropriate potency and selectivity determinants has led to the discovery of several advanced leads that were orally efficacious in animal models of anaplastic large cell lymphoma (ALCL). A lead inhibitor (30) displaying superior efficacy was identified and in depth in vitro/in vivo characterization will be presented.
Bioorganic & Medicinal Chemistry Letters | 2011
Eugen F. Mesaros; Jason P. Burke; Jonathan Parrish; Benjamin J. Dugan; Andrew V. Anzalone; Thelma S. Angeles; Mark S. Albom; Lisa D. Aimone; Matthew R. Quail; Weihua Wan; Lihui Lu; Zeqi Huang; Mark A. Ator; Bruce Ruggeri; Mangeng Cheng; Gregory R. Ott; Bruce D. Dorsey
The synthesis and biological evaluation of potent and selective anaplastic lymphoma kinase (ALK) inhibitors from a novel class of 2,4-diaminopyrimidines, incorporating 2,3,4,5-tetrahydro-benzo[d]azepine fragments, is described. An orally bioavailable analogue (18) that displayed antitumor efficacy in ALCL xenograft models in mice was identified and extensively profiled.
Journal of Medicinal Chemistry | 2012
Benjamin J. Dugan; Diane E. Gingrich; Eugen F. Mesaros; Karen L. Milkiewicz; Matthew A. Curry; Allison L. Zulli; Pawel Dobrzanski; Cynthia Serdikoff; Mahfuza Jan; Thelma S. Angeles; Mark S. Albom; Jennifer L. Mason; Lisa D. Aimone; Sheryl L. Meyer; Zeqi Huang; Kevin J. Wells-Knecht; Mark A. Ator; Bruce Ruggeri; Bruce D. Dorsey
Members of the JAK family of nonreceptor tyrosine kinases play a critical role in the growth and progression of many cancers and in inflammatory diseases. JAK2 has emerged as a leading therapeutic target for oncology, providing a rationale for the development of a selective JAK2 inhibitor. A program to optimize selective JAK2 inhibitors to combat cancer while reducing the risk of immune suppression associated with JAK3 inhibition was undertaken. The structure-activity relationships and biological evaluation of a novel series of compounds based on a 1,2,4-triazolo[1,5-a]pyridine scaffold are reported. Para substitution on the aryl at the C8 position of the core was optimum for JAK2 potency (17). Substitution at the C2 nitrogen position was required for cell potency (21). Interestingly, meta substitution of C2-NH-aryl moiety provided exceptional selectivity for JAK2 over JAK3 (23). These efforts led to the discovery of CEP-33779 (29), a novel, selective, and orally bioavailable inhibitor of JAK2.
Journal of Medicinal Chemistry | 2012
Eugen F. Mesaros; Tho V. Thieu; Gregory J. Wells; Craig A. Zificsak; Jason C. Wagner; Henry J. Breslin; Rabindranath Tripathy; James L. Diebold; Robert J. McHugh; Ashley T. Wohler; Matthew R. Quail; Weihua Wan; Lihui Lu; Zeqi Huang; Mark S. Albom; Thelma S. Angeles; Kevin J. Wells-Knecht; Lisa D. Aimone; Mangeng Cheng; Mark A. Ator; Gregory R. Ott; Bruce D. Dorsey
Chemical strategies to mitigate cytochrome P450-mediated bioactivation of novel 2,7-disubstituted pyrrolo[2,1-f][1,2,4]triazine ALK inhibitors are described along with synthesis and biological activity. Piperidine-derived analogues showing minimal microsomal reactive metabolite formation were discovered. Potent, selective, and metabolically stable ALK inhibitors from this class were identified, and an orally bioavailable compound (32) with antitumor efficacy in ALK-driven xenografts in mouse models was extensively characterized.
Bioorganic & Medicinal Chemistry Letters | 2011
Craig A. Zificsak; Jay P. Theroff; Lisa D. Aimone; Thelma S. Angeles; Mark S. Albom; Mangeng Cheng; Eugen F. Mesaros; Gregory R. Ott; Matthew R. Quail; Ted L. Underiner; Weihua Wan; Bruce D. Dorsey
The incorporation of R,R-1,2-diaminocyclohexane at C4 in a series of 2,4-diaminopyrimidines led to a number of ALK inhibitors in which optimized activity was achieved by conversion of the 2-amino group into a methanesulfonamide. Tumor growth inhibition was observed when an orally bioavailable analog was evaluated in a Karpas-299 tumor xenograft mouse model.
Journal of Medicinal Chemistry | 2016
Gregory R. Ott; Mangeng Cheng; Keith S. Learn; Jason C. Wagner; Diane E. Gingrich; Joseph G. Lisko; Matthew A. Curry; Eugen F. Mesaros; Arup K. Ghose; Matthew R. Quail; Weihua Wan; Lihui Lu; Pawel Dobrzanski; Mark S. Albom; Thelma S. Angeles; Kevin J. Wells-Knecht; Zeqi Huang; Lisa D. Aimone; Elizabeth Bruckheimer; Nathan Anderson; Jay Friedman; Sandra V. Fernandez; Mark A. Ator; Bruce Ruggeri; Bruce D. Dorsey
Analogues structurally related to anaplastic lymphoma kinase (ALK) inhibitor 1 were optimized for metabolic stability. The results from this endeavor not only led to improved metabolic stability, pharmacokinetic parameters, and in vitro activity against clinically derived resistance mutations but also led to the incorporation of activity for focal adhesion kinase (FAK). FAK activation, via amplification and/or overexpression, is characteristic of multiple invasive solid tumors and metastasis. The discovery of the clinical stage, dual FAK/ALK inhibitor 27b, including details surrounding SAR, in vitro/in vivo pharmacology, and pharmacokinetics, is reported herein.
Expert Opinion on Therapeutic Patents | 2014
Eugen F. Mesaros; Gregory R. Ott; Bruce D. Dorsey
Introduction: Anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase from the insulin receptor superfamily, is implicated in the oncogenesis of numerous cancers including anaplastic large-cell lymphoma, non–small-cell lung cancer, diffuse large B-cell lymphoma, inflammatory myofibroblastic tumors, glioblastoma, as well as neuroblastoma. The root cause for these specific cancers has been identified as aberrant ALK kinase activity, which has been shown to be associated with specific gene translocations, single-point mutations, gene amplification and/or overexpression. The direct inhibition of ALK with small-molecule inhibitors represents a viable therapeutic intervention that has achieved clinical proof of concept. Areas covered: Small-molecule ALK inhibitors covered in the patent literature from 2010 to September 2013 are described. Relevant peer-reviewed journal articles that describe discovery and development of the above-identified ALK inhibitors are also discussed. Keyword-based (e.g., ALK, anaplastic lymphoma kinase) literature searches were conducted in Scifinder®. Expert opinion: Novel ALK inhibitors continued to be discovered at a fast pace over the covered period, with many distinct chemotypes emerging. Crizotinib received FDA approval in 2011, and six additional ALK inhibitors have entered clinical trials. The focus of ALK research appears to have shifted toward inhibitors that display activity against resistant mutants unearthed in clinical studies with crizotinib.
Chemical Research in Toxicology | 2011
Kevin J. Wells-Knecht; Gregory R. Ott; Mangeng Cheng; Gregory J. Wells; Henry J. Breslin; Diane E. Gingrich; Linda Weinberg; Eugen F. Mesaros; Zeqi Huang; Mehran Yazdanian; Mark A. Ator; Lisa D. Aimone; Kelli S. Zeigler; Bruce D. Dorsey
There are numerous published studies establishing a link between reactive metabolite formation and toxicity of various drugs. Although the correlation between idiosyncratic reactions and reactive metabolite formation is not 1:1, the association between the two is such that many pharmaceutical companies now monitor for reactive metabolites as a standard part of drug candidate testing and selection. The most common method involves in vitro human microsomal incubations in the presence of a thiol trapping agent, such as glutathione (GSH), followed by LC/MS analysis. In this study, we describe several 2,7-disubstituted-pyrrolotriazine analogues that are extremely potent reactive metabolite precursors. Utilizing a UPLC/UV/MS method, unprecedented levels of GSH adducts were measured that are 5-10 times higher than previously reported for high reactive metabolite-forming compounds such as clozapine and troglitazone.
Bioorganic & Medicinal Chemistry Letters | 2015
Eugen F. Mesaros; Thelma S. Angeles; Mark S. Albom; Jason C. Wagner; Lisa D. Aimone; Weihua Wan; Lihui Lu; Zeqi Huang; Mark Olsen; Emily Kordwitz; R. Curtis Haltiwanger; Amy J. Landis; Mangeng Cheng; Bruce Ruggeri; Mark A. Ator; Bruce D. Dorsey; Gregory R. Ott
The diastereoselective synthesis and biological activity of piperidine-3,4-diol and piperidine-3-ol-derived pyrrolotriazine inhibitors of anaplastic lymphoma kinase (ALK) are described. Although piperidine-3,4-diol and piperidine-3-ol derivatives showed comparable in vitro ALK activity, the latter subset of inhibitors demonstrated improved physiochemical and pharmacokinetic properties. Furthermore, the stereochemistry of the C3 and C4 centers had a marked impact on the in vivo inhibition of ALK autophosphorylation. Thus, trans-4-aryl-piperidine-3-ols (22) were more potent than the cis diastereomers (20).
Archive | 2007
Gulzar Ahmed; Adolph C. Bohnstedt; Henry J. Breslin; Jason P. Burke; Matthew A. Curry; James L. Diebold; Bruce D. Dorsey; Benjamin J. Dugan; Daming Feng; Diane E. Gingrich; Tao Guo; Koc-Kan Ho; Keith S. Learn; Joseph G. Lisko; Rong-Qiang Liu; Eugen F. Mesaros; Karen L. Milkiewicz; Gregory R. Ott; Jonathan Parrish; Jay Theroff; Tho V. Thieu; Rabindranath Tripathy; Theodore L. Underiner; Jason C. Wagner; Linda Weinberg; Gregory J. Wells; Ming You; Craig A. Zificsak