Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eugene A. Podrez is active.

Publication


Featured researches published by Eugene A. Podrez.


Journal of Clinical Investigation | 2000

Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice

Maria Febbraio; Eugene A. Podrez; Jonathan D. Smith; David P. Hajjar; Stanley L. Hazen; Henry F. Hoff; Kavita Sharma; Roy L. Silverstein

Macrophage scavenger receptors have been implicated as key players in the pathogenesis of atherosclerosis. To assess the role of the class B scavenger receptor CD36 in atherogenesis, we crossed a CD36-null strain with the atherogenic apo E-null strain and quantified lesion development. There was a 76.5% decrease in aortic tree lesion area (Western diet) and a 45% decrease in aortic sinus lesion area (normal chow) in the CD36-apo E double-null mice when compared with controls, despite alterations in lipoprotein profiles that often correlate with increased atherogenicity. Macrophages derived from CD36-apo E double-null mice bound and internalized more than 60% less copper-oxidized LDL and LDL modified by monocyte-generated reactive nitrogen species. A similar inhibition of in vitro lipid accumulation and foam cell formation after exposure to these ligands was seen. These results support a major role for CD36 in atherosclerotic lesion development in vivo and suggest that blockade of CD36 can be protective even in more extreme proatherogenic circumstances.


Free Radical Biology and Medicine | 2000

Myeloperoxidase-generated oxidants and atherosclerosis

Eugene A. Podrez; Husam M. Abu-Soud; Stanley L. Hazen

Atherosclerosis is a chronic inflammatory process where oxidative damage within the artery wall is implicated in the pathogenesis of the disease. Mononuclear phagocytes, an inflammatory cell capable of generating a variety of oxidizing species, are early components of arterial lesions. Their normal functions include host defense and surveillance through regulated generation of diffusible radical species, reactive oxygen or nitrogen species, and HOCl (hypochlorous acid). However, under certain circumstances an excess of these oxidizing species can overwhelm local antioxidant defenses and lead to oxidant stress and oxidative tissue injury, processes implicated in the pathogenesis of atherosclerosis. This review focuses on oxidation reactions catalyzed by myeloperoxidase (MPO), an abundant heme protein secreted from activated phagocytes which is present in human atherosclerotic lesions. Over the past several years, significant evidence has accrued demonstrating that MPO is one pathway for protein and lipoprotein oxidation during the evolution of cardiovascular disease. Multiple distinct products of MPO are enriched in human atherosclerotic lesions and LDL recovered from human atheroma. However, the biological consequences of these MPO-catalyzed reactions in vivo are still unclear. Here we discuss evidence for the occurrence of MPO-catalyzed oxidation reactions in vivo and the potential role MPO plays in both normal host defenses and inflammatory diseases like atherosclerosis.


Journal of Clinical Investigation | 1999

Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro

Eugene A. Podrez; David Schmitt; Henry F. Hoff; Stanley L. Hazen

Oxidized LDL is implicated in atherosclerosis; however, the pathways that convert LDL into an atherogenic form in vivo are not established. Production of reactive nitrogen species may be one important pathway, since LDL recovered from human atherosclerotic aorta is enriched in nitrotyrosine. We now report that reactive nitrogen species generated by the MPO-H2O2-NO2- system of monocytes convert LDL into a form (NO2-LDL) that is avidly taken up and degraded by macrophages, leading to massive cholesterol deposition and foam cell formation, essential steps in lesion development. Incubation of LDL with isolated MPO, an H2O2-generating system, and nitrite (NO2-)-- a major end-product of NO metabolism--resulted in nitration of apolipoprotein B 100 tyrosyl residues and initiation of LDL lipid peroxidation. The time course of LDL protein nitration and lipid peroxidation paralleled the acquisition of high-affinity, concentration-dependent, and saturable binding of NO2-LDL to human monocyte-derived macrophages and mouse peritoneal macrophages. LDL modification and conversion into a high-uptake form occurred in the absence of free metal ions, required NO2-, occurred at physiological levels of Cl-, and was inhibited by heme poisons, catalase, and BHT. Macrophage binding of NO2-LDL was specific and mediated by neither the LDL receptor nor the scavenger receptor class A type I. Exposure of macrophages to NO2-LDL promoted cholesteryl ester synthesis, intracellular cholesterol and cholesteryl ester accumulation, and foam cell formation. Collectively, these results identify MPO-generated reactive nitrogen species as a physiologically plausible pathway for converting LDL into an atherogenic form.


Journal of Clinical Investigation | 2000

Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species

Eugene A. Podrez; Maria Febbraio; Nader Sheibani; David Schmitt; Roy L. Silverstein; David P. Hajjar; Peter A. Cohen; William A. Frazier; Henry F. Hoff; Stanley L. Hazen

The oxidative conversion of LDL into an atherogenic form is considered a pivotal event in the development of cardiovascular disease. Recent studies have identified reactive nitrogen species generated by monocytes by way of the myeloperoxidase-hydrogen peroxide-nitrite (MPO-H(2)O(2)-NO(2)(-)) system as a novel mechanism for converting LDL into a high-uptake form (NO(2)-LDL) for macrophages. We now identify the scavenger receptor CD36 as the major receptor responsible for high-affinity and saturable cellular recognition of NO(2)-LDL by murine and human macrophages. Using cells stably transfected with CD36, CD36-specific blocking mAbs, and CD36-null macrophages, we demonstrated CD36-dependent binding, cholesterol loading, and macrophage foam cell formation after exposure to NO(2)-LDL. Modification of LDL by the MPO-H(2)O(2)-NO(2)(-) system in the presence of up to 80% lipoprotein-deficient serum (LPDS) still resulted in the conversion of the lipoprotein into a high-uptake form for macrophages, whereas addition of less than 5% LPDS totally blocked Cu(2+)-catalyzed LDL oxidation and conversion into a ligand for CD36. Competition studies demonstrated that lipid oxidation products derived from 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine can serve as essential moieties on NO(2)-LDL recognized by CD36. Collectively, these results suggest that MPO-dependent conversion of LDL into a ligand for CD36 is a likely pathway for generating foam cells in vivo. MPO secreted from activated phagocytes may also tag phospholipid-containing targets for removal by CD36-positive cells.


Nature Medicine | 2007

Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype.

Eugene A. Podrez; Tatiana V. Byzova; Maria Febbraio; Robert G. Salomon; Yi Ma; Manojkumar Valiyaveettil; Eugenia Poliakov; Mingjiang Sun; Paula J. Finton; Brian R. Curtis; Juhua Chen; Renliang Zhang; Roy L. Silverstein; Stanley L. Hazen

Dyslipidemia is associated with a prothrombotic phenotype; however, the mechanisms responsible for enhanced platelet reactivity remain unclear. Proatherosclerotic lipid abnormalities are associated with both enhanced oxidant stress and the generation of biologically active oxidized lipids, including potential ligands for the scavenger receptor CD36, a major platelet glycoprotein. Using multiple mouse in vivo thrombosis models, we now demonstrate that genetic deletion of Cd36 protects mice from hyperlipidemia-associated enhanced platelet reactivity and the accompanying prothrombotic phenotype. Structurally defined oxidized choline glycerophospholipids that serve as high-affinity ligands for CD36 were at markedly increased levels in the plasma of hyperlipidemic mice and in the plasma of humans with low HDL levels, were able to bind platelets via CD36 and, at pathophysiological levels, promoted platelet activation via CD36. Thus, interactions of platelet CD36 with specific endogenous oxidized lipids play a crucial role in the well-known clinical associations between dyslipidemia, oxidant stress and a prothrombotic phenotype.


Nature | 2010

Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands

Xiaoxia Z. West; Nikolay L. Malinin; Alona Merkulova; Mira Tischenko; Bethany A. Kerr; Ernest C. Borden; Eugene A. Podrez; Robert G. Salomon; Tatiana V. Byzova

Reciprocity of inflammation, oxidative stress and neovascularization is emerging as an important mechanism underlying numerous processes from tissue healing and remodelling to cancer progression. Whereas the mechanism of hypoxia-driven angiogenesis is well understood, the link between inflammation-induced oxidation and de novo blood vessel growth remains obscure. Here we show that the end products of lipid oxidation, ω-(2-carboxyethyl)pyrrole (CEP) and other related pyrroles, are generated during inflammation and wound healing and accumulate at high levels in ageing tissues in mice and in highly vascularized tumours in both murine and human melanoma. The molecular patterns of carboxyalkylpyrroles are recognized by Toll-like receptor 2 (TLR2), but not TLR4 or scavenger receptors on endothelial cells, leading to an angiogenic response that is independent of vascular endothelial growth factor. CEP promoted angiogenesis in hindlimb ischaemia and wound healing models through MyD88-dependent TLR2 signalling. Neutralization of endogenous carboxyalkylpyrroles impaired wound healing and tissue revascularization and diminished tumour angiogenesis. Both TLR2 and MyD88 are required for CEP-induced stimulation of Rac1 and endothelial migration. Taken together, these findings establish a new function of TLR2 as a sensor of oxidation-associated molecular patterns, providing a key link connecting inflammation, oxidative stress, innate immunity and angiogenesis.


Nature Medicine | 2009

A point mutation in KINDLIN3 ablates activation of three integrin subfamilies in humans.

Nikolay L. Malinin; Li Zhang; Jeongsuk Choi; Alieta Ciocea; Olga V. Razorenova; Yan Qing Ma; Eugene A. Podrez; Michael F. Tosi; Donald P. Lennon; Arnold I. Caplan; Susan B. Shurin; Edward F. Plow; Tatiana V. Byzova

Monogenic deficiency diseases provide unique opportunities to define the contributions of individual molecules to human physiology and to identify pathologies arising from their dysfunction. Here we describe a deficiency disease in two human siblings that presented with severe bleeding, frequent infections and osteopetrosis at an early age. These symptoms are consistent with but more severe than those reported for people with leukocyte adhesion deficiency III (LAD-III). Mechanistically, these symptoms arose from an inability to activate the integrins expressed on hematopoietic cells, including platelets and leukocytes. Immortalized lymphocyte cell lines isolated from the two individuals showed integrin activation defects. Several proteins previously implicated in integrin activation, including Ras-associated protein-1 (RAP1) and calcium and diacylglycerol-regulated guanine nucleotide exchange factor-1 (CALDAG-GEF1), were present and functional in these cell lines. The genetic basis for this disease was traced to a point mutation in the coding region of the KINDLIN3 (official gene symbol FERMT3) gene. When wild-type KINDLIN-3 was expressed in the immortalized lymphocytes, their integrins became responsive to activation signals. These results identify a genetic disease that severely compromises the health of the affected individuals and establish an essential role of KINDLIN-3 in integrin activation in humans. Furthermore, allogeneic bone marrow transplantation was shown to alleviate the symptoms of the disease.


Circulation Research | 1999

Formation of Nitric Oxide–Derived Oxidants by Myeloperoxidase in Monocytes: Pathways for Monocyte-Mediated Protein Nitration and Lipid Peroxidation In Vivo

Stanley L. Hazen; Renliang Zhang; Zhongzhou Shen; Weijia Wu; Eugene A. Podrez; Jennifer C. MacPherson; David Schmitt; Shome Nath Mitra; Chaitali Mukhopadhyay; Yonghong Chen; Peter A. Cohen; Henry F. Hoff; Husam M. Abu-Soud

Protein nitration and lipid peroxidation are implicated in the pathogenesis of atherosclerosis; however, neither the cellular mediators nor the reaction pathways for these events in vivo are established. In the present study, we examined the chemical pathways available to monocytes for generating reactive nitrogen species and explored their potential contribution to the protein nitration and lipid peroxidation of biological targets. Isolated human monocytes activated in media containing physiologically relevant levels of nitrite (NO(2)(-)), a major end product of nitric oxide ((*)NO) metabolism, nitrate apolipoprotein B-100 tyrosine residues and initiate LDL lipid peroxidation. LDL nitration (assessed by gas chromatography-mass spectrometry quantification of nitrotyrosine) and lipid peroxidation (assessed by high-performance liquid chromatography with online tandem mass spectrometric quantification of distinct products) required cell activation and NO(2)(-); occurred in the presence of metal chelators, superoxide dismutase (SOD), and scavengers of hypohalous acids; and was blocked by myeloperoxidase (MPO) inhibitors and catalase. Monocytes activated in the presence of the exogenous (*)NO generator PAPA NONOate (Z-[N-(3-aminopropyl)-N-(n-propyl)amino]diazen-1-ium-1,2- diolate) promoted LDL protein nitration and lipid peroxidation by a combination of pathways. At low rates of (*)NO flux, both protein nitration and lipid peroxidation were inhibited by catalase and peroxidase inhibitors but not SOD, suggesting a role for MPO. As rates of (*)NO flux increased, both nitrotyrosine formation and 9-hydroxy-10,12-octadecadienoate/9-hydroperoxy-10,12-octadecadieno ic acid production by monocytes became insensitive to the presence of catalase or peroxidase inhibitors, but they were increasingly inhibited by SOD and methionine, suggesting a role for peroxynitrite. Collectively, these results demonstrate that monocytes use distinct mechanisms for generating (*)NO-derived oxidants, and they identify MPO as a source of nitrating intermediates in monocytes.


Journal of Biological Chemistry | 2006

Light-induced Oxidation of Photoreceptor Outer Segment Phospholipids Generates Ligands for CD36-mediated Phagocytosis by Retinal Pigment Epithelium A POTENTIAL MECHANISM FOR MODULATING OUTER SEGMENT PHAGOCYTOSIS UNDER OXIDANT STRESS CONDITIONS

Mingjiang Sun; Silvia C. Finnemann; Maria Febbraio; Lian Shan; Suresh P. Annangudi; Eugene A. Podrez; George Hoppe; Ruth M. Darrow; Daniel T. Organisciak; Robert G. Salomon; Roy L. Silverstein; Stanley L. Hazen

Clearance by the retinal pigment epithelium (RPE) of shed photoreceptor outer segments (OSs), a tissue with one of the highest turnover rates in the body, is critical to the maintenance and normal function of the retina. We hypothesized that there is a potential role for photo-oxidation in OS uptake by RPE via scavenger receptor-mediated recognition of structurally defined lipid peroxidation products. We now demonstrate that specific structurally defined oxidized species derived from arachidonyl, linoleoyl, and docosahexanoyl phosphatidylcholine may serve as endogenous ligands on OSs for uptake by RPE via the scavenger receptor CD36. Mass spectrometry studies of retinal lipids recovered from dark-adapted rats following physiological light exposure demonstrate in vivo formation of specific oxidized phosphatidylcholine molecular species possessing a CD36 recognition motif, an oxidatively truncated sn-2 acyl group with a terminal γ-hydroxy(or oxo)-α,β-unsaturated carbonyl. Cellular studies using RPE isolated from wild-type versus CD36 null mice suggest that CD36 plays a role in engulfment, but not initial binding, of OSs via these oxidized phospholipids. Parallel increases in OS protein-bound nitrotyrosine, a post-translational modification by nitric oxide (NO)-derived oxidants, were also observed, suggesting a possible role for light-induced generation of NO-derived oxidants in the initiation of OS lipid peroxidation. Collectively, these studies suggest that intense light exposure promotes “oxidative tagging” of photoreceptor outer segments with structurally defined choline glycerophospholipids that may serve as a physiological signal for CD36-mediated phagocytosis under oxidant stress conditions.


The FASEB Journal | 2005

Thrombospondin-1 up-regulates expression of cell adhesion molecules and promotes monocyte binding to endothelium

Natalya V. Narizhneva; Olga V. Razorenova; Eugene A. Podrez; Juhua Chen; Unni M. Chandrasekharan; Paul E. DiCorleto; Edward F. Plow; Eric J. Topol; Tatiana V. Byzova

Expression of cell adhesion molecules (CAM) responsible for leukocyte‐endothelium interactions plays a crucial role in inflammation and atherogenesis. Up‐regulation of vascular CAM‐1 (VCAM‐1), intracellular CAM‐1 (ICAM‐1), and E‐selectin expression promotes monocyte recruitment to sites of injury and is considered to be a critical step in atherosclerotic plaque development. Factors that trigger this initial response are not well understood. As platelet activation not only promotes thrombosis but also early stages of atherogenesis, we considered the role of thrombospondin‐1 (TSP‐1), a matricellular protein released in abundance from activated platelets and accumulated in sites of vascular injury, as a regulator of CAM expression. TSP‐1 induced expression of VCAM‐1 and ICAM‐1 on endothelium of various origins, which in turn, resulted in a significant increase of monocyte attachment. This effect could be mimicked by a peptide derived from the C‐terminal domain of TSP‐1 and known to interact with CD47 on the cell surface. The essential role of CD47 in the cellular responses to TSP‐1 was demonstrated further using inhibitory antibodies and knockdown of CD47 with small interfering RNA. Furthermore, we demonstrated that secretion of endogenous TSP‐1 and its interaction with CD47 on the cell surface mediates endothelial response to the major proinflammatory agent, tumor necrosis factor α (TNF‐α). Taken together, this study identifies a novel mechanism regulating CAM expression and subsequent monocyte binding to endothelium, which might influence the development of anti‐atherosclerosis therapeutic strategies.

Collaboration


Dive into the Eugene A. Podrez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert G. Salomon

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roy L. Silverstein

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge