Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert G. Salomon is active.

Publication


Featured researches published by Robert G. Salomon.


Journal of Neurochemistry | 2002

4‐Hydroxynonenal‐Derived Advanced Lipid Peroxidation End Products Are Increased in Alzheimer's Disease

Lawrence M. Sayre; Dawn A. Zelasko; Peggy L.R. Harris; George Perry; Robert G. Salomon; Mark A. Smith

Abstract: Recent studies have demonstrated oxidative damage is one of the salient features of Alzheimers disease (AD). In these studies, glycoxidation adduction to and direct oxidation of amino acid side chains have been demonstrated in the lesions and neurons of AD. To address whether lipid damage may also play an important pathogenic role, we raised rabbit antisera specific for the lysine‐derived pyrrole adducts formed by lipid peroxidation‐derived 4‐hydroxynonenal (HNE). These antibodies were used in immunocytochemical evaluation of brain tissue from AD and age‐matched control patients. HNE‐pyrrole immunoreactivity not only was identified in about half of all neurofibrillary tangles, but was also evident in neurons lacking neurofibrillary tangles in the AD cases. In contrast, few senile plaques were labeled, and then only the dystrophic neurites were weakly stained, whereas the amyloid‐β deposits were unlabeled. Age‐matched controls showed only background HNE‐pyrrole immunoreactivity in hippocampal or cortical neurons. In addition to providing further evidence that oxidative stress‐related protein modification is a pervasive factor in AD, the known neurotoxicity of HNE suggests that lipid peroxidation may also play a role in the neuronal death in AD that underlies cognitive deficits.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Drusen proteome analysis: An approach to the etiology of age-related macular degeneration

John W. Crabb; Masaru Miyagi; Xiaorong Gu; Karen G. Shadrach; Karen A. West; Hirokazu Sakaguchi; Motohiro Kamei; Azeem Hasan; Lin Yan; Mary E. Rayborn; Robert G. Salomon; Joe G. Hollyfield

Drusen are extracellular deposits that accumulate below the retinal pigment epithelium on Bruchs membrane and are risk factors for developing age-related macular degeneration (AMD). The progression of AMD might be slowed or halted if the formation of drusen could be modulated. To work toward a molecular understanding of drusen formation, we have developed a method for isolating microgram quantities of drusen and Bruchs membrane for proteome analysis. Liquid chromatography tandem MS analyses of drusen preparations from 18 normal donors and five AMD donors identified 129 proteins. Immunocytochemical studies have thus far localized ≈16% of these proteins in drusen. Tissue metalloproteinase inhibitor 3, clusterin, vitronectin, and serum albumin were the most common proteins observed in normal donor drusen whereas crystallin was detected more frequently in AMD donor drusen. Up to 65% of the proteins identified were found in drusen from both AMD and normal donors. However, oxidative protein modifications were also observed, including apparent crosslinked species of tissue metalloproteinase inhibitor 3 and vitronectin, and carboxyethyl pyrrole protein adducts. Carboxyethyl pyrrole adducts are uniquely generated from the oxidation of docosahexaenoate-containing lipids. By Western analysis they were found to be more abundant in AMD than in normal Bruchs membrane and were found associated with drusen proteins. Carboxymethyl lysine, another oxidative modification, was also detected in drusen. These data strongly support the hypothesis that oxidative injury contributes to the pathogenesis of AMD and suggest that oxidative protein modifications may have a critical role in drusen formation.


Nature Medicine | 2008

Oxidative damage–induced inflammation initiates age-related macular degeneration

Joe G. Hollyfield; Vera L. Bonilha; Mary E. Rayborn; Xiaoping Yang; Karen G. Shadrach; Liang Lu; Rafael L Ufret; Robert G. Salomon; Victor L. Perez

Oxidative damage and inflammation are postulated to be involved in age-related macular degeneration (AMD). However, the molecular signal(s) linking oxidation to inflammation in this late-onset disease is unknown. Here we describe AMD-like lesions in mice after immunization with mouse serum albumin adducted with carboxyethylpyrrole, a unique oxidation fragment of docosahexaenoic acid that has previously been found adducting proteins in drusen from AMD donor eye tissues and in plasma samples from individuals with AMD. Immunized mice develop antibodies to this hapten, fix complement component-3 in Bruchs membrane, accumulate drusen below the retinal pigment epithelium during aging, and develop lesions in the retinal pigment epithelium mimicking geographic atrophy, the blinding end-stage condition characteristic of the dry form of AMD. We hypothesize that these mice are sensitized to the generation of carboxyethylpyrrole adducts in the outer retina, where docosahexaenoic acid is abundant and conditions for oxidative damage are permissive. This new model provides a platform for dissecting the molecular pathology of oxidative damage in the outer retina and the immune response contributing to AMD.


Nature Medicine | 2007

Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype.

Eugene A. Podrez; Tatiana V. Byzova; Maria Febbraio; Robert G. Salomon; Yi Ma; Manojkumar Valiyaveettil; Eugenia Poliakov; Mingjiang Sun; Paula J. Finton; Brian R. Curtis; Juhua Chen; Renliang Zhang; Roy L. Silverstein; Stanley L. Hazen

Dyslipidemia is associated with a prothrombotic phenotype; however, the mechanisms responsible for enhanced platelet reactivity remain unclear. Proatherosclerotic lipid abnormalities are associated with both enhanced oxidant stress and the generation of biologically active oxidized lipids, including potential ligands for the scavenger receptor CD36, a major platelet glycoprotein. Using multiple mouse in vivo thrombosis models, we now demonstrate that genetic deletion of Cd36 protects mice from hyperlipidemia-associated enhanced platelet reactivity and the accompanying prothrombotic phenotype. Structurally defined oxidized choline glycerophospholipids that serve as high-affinity ligands for CD36 were at markedly increased levels in the plasma of hyperlipidemic mice and in the plasma of humans with low HDL levels, were able to bind platelets via CD36 and, at pathophysiological levels, promoted platelet activation via CD36. Thus, interactions of platelet CD36 with specific endogenous oxidized lipids play a crucial role in the well-known clinical associations between dyslipidemia, oxidant stress and a prothrombotic phenotype.


Nature | 2010

Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands

Xiaoxia Z. West; Nikolay L. Malinin; Alona Merkulova; Mira Tischenko; Bethany A. Kerr; Ernest C. Borden; Eugene A. Podrez; Robert G. Salomon; Tatiana V. Byzova

Reciprocity of inflammation, oxidative stress and neovascularization is emerging as an important mechanism underlying numerous processes from tissue healing and remodelling to cancer progression. Whereas the mechanism of hypoxia-driven angiogenesis is well understood, the link between inflammation-induced oxidation and de novo blood vessel growth remains obscure. Here we show that the end products of lipid oxidation, ω-(2-carboxyethyl)pyrrole (CEP) and other related pyrroles, are generated during inflammation and wound healing and accumulate at high levels in ageing tissues in mice and in highly vascularized tumours in both murine and human melanoma. The molecular patterns of carboxyalkylpyrroles are recognized by Toll-like receptor 2 (TLR2), but not TLR4 or scavenger receptors on endothelial cells, leading to an angiogenic response that is independent of vascular endothelial growth factor. CEP promoted angiogenesis in hindlimb ischaemia and wound healing models through MyD88-dependent TLR2 signalling. Neutralization of endogenous carboxyalkylpyrroles impaired wound healing and tissue revascularization and diminished tumour angiogenesis. Both TLR2 and MyD88 are required for CEP-induced stimulation of Rac1 and endothelial migration. Taken together, these findings establish a new function of TLR2 as a sensor of oxidation-associated molecular patterns, providing a key link connecting inflammation, oxidative stress, innate immunity and angiogenesis.


Nature Medicine | 2012

NLRP3 has a protective role in age-related macular degeneration through the induction of IL-18 by drusen components

Sarah L. Doyle; Matthew Campbell; Ema Ozaki; Robert G. Salomon; Andres Mori; Paul Francis Kenna; G.J. Farrar; Anna Sophia Kiang; Marian M. Humphries; Ed C. Lavelle; Luke A. J. O'Neill; Joe G. Hollyfield; Peter Humphries

Age-related macular degeneration (AMD) is the leading cause of central vision loss worldwide. Drusen accumulation is the major pathological hallmark common to both dry and wet AMD. Although activation of the immune system has been implicated in disease progression, the pathways involved are unclear. Here we show that drusen isolated from donor AMD eyes activates the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome, causing secretion of interleukin-1β (IL-1β) and IL-18. Drusen component C1Q also activates the NLRP3 inflammasome. Moreover, the oxidative-stress–related protein-modification carboxyethylpyrrole (CEP), a biomarker of AMD, primes the inflammasome. We found cleaved caspase-1 and NLRP3 in activated macrophages in the retinas of mice immunized with CEP-adducted mouse serum albumin, modeling a dry-AMD–like pathology. We show that laser-induced choroidal neovascularization (CNV), a mouse model of wet AMD, is exacerbated in Nlrp3−/− but not Il1r1−/− mice, directly implicating IL-18 in the regulation of CNV development. These findings indicate a protective role for NLRP3 and IL-18 in the progression of AMD.


Journal of Biological Chemistry | 2008

The Lipid Whisker Model of the Structure of Oxidized Cell Membranes

Michael E. Greenberg; Xin Min Li; Bogdan G. Gugiu; Xiaodong Gu; Jun Qin; Robert G. Salomon; Stanley L. Hazen

An essential feature of the innate immune system is maintaining cellular homeostasis by identifying and removing senescent and apoptotic cells and modified lipoproteins. Identification is achieved through the recognition of molecular patterns, including structurally distinct oxidized phospholipids, on target cells by macrophage receptors. Both the structural nature of the molecular patterns recognized and their orientation within membranes has remained elusive. We recently described the membrane conformation of an endogenous oxidized phospholipid ligand for macrophage scavenger receptor CD36, where the truncated oxidized sn-2 fatty acid moiety protrudes into the aqueous phase, rendering it accessible for recognition. Herein we examine the generality of this conformational motif for peroxidized glycerophospholipids within membranes. Our data reveal that the addition of a polar oxygen atom on numerous peroxidized fatty acids reorients the acyl chain, whereby it no longer remains buried within the membrane interior but rather protrudes into the aqueous compartment. Moreover, we show that neither a conformational change in the head group relative to the membrane surface nor the presence of a polar head group is essential for CD36 recognition of free oxidized phospholipid ligands within membranes. Rather, our results suggest the following global phenomenon. As cellular membranes undergo lipid peroxidation, such as during senescence or apoptosis, previously hydrophobic portions of fatty acids will move from the interior of the lipid bilayer to the aqueous exterior. This enables physical contact between pattern recognition receptor and molecular pattern ligand. Cell membranes thus “grow whiskers” as phospholipids undergo peroxidation, and many of their oxidized fatty acids protrude at the surface.


Journal of Biological Chemistry | 1999

Identification of Extremely Reactive γ-Ketoaldehydes (Isolevuglandins) as Products of the Isoprostane Pathway and Characterization of Their Lysyl Protein Adducts

Cynthia Brame; Robert G. Salomon; Jason D. Morrow; L. Jackson Roberts

Isoprostanes are prostaglandin-like compounds produced by non-enzymatic peroxidation of arachidonic acid. The cyclooxygenase-derived endoperoxide, prostaglandin H2, can undergo rearrangement to highly reactive γ-ketoaldehyde secoprostanoids (levuglandin E2 and D2). We explored whether isoprostane endoperoxide intermediates also rearrange to levuglandin-like compounds (isolevuglandins). Formation of a series of isolevuglandins during oxidation of arachidonic acid in vitro was established utilizing a number of mass spectrometric analyses. However, these compounds could not be detected in free form in protein-containing biological systems, which we hypothesized was due to extremely rapid adduction to amines. This was supported by the finding that >60% of levuglandin E2 adducted to albumin within 20 s, whereas ∼50% of 4-hydroxynonenal still remained unadducted after 1 h. By utilizing electrospray tandem mass spectrometry, we established that these compounds form oxidized pyrrole adducts (lactams and hydroxylactams) with lysine. Formation of isolevuglandin-lysine adducts on apolipoprotein B was readily detected during oxidation of low density lipoprotein following enzymatic digestion of the protein to single amino acids. These studies identify a novel series of extremely reactive products of the isoprostane pathway that rapidly form covalent adducts with lysine residues on proteins. This provides the basis to explore the formation of isolevuglandins in vivo to investigate the potential biological ramifications of their formation in settings of oxidant injury.


Molecular & Cellular Proteomics | 2008

Retinal Pigment Epithelium Lipofuscin Proteomics

Kwok-Peng Ng; Bogdan G. Gugiu; Kutralanathan Renganathan; Matthew Davies; Xiaorong Gu; John S. Crabb; So R.a Kim; Malgorzata Barbara Rozanowska; Vera L. Bonilha; Mary E. Rayborn; Robert G. Salomon; Janet R. Sparrow; Michael E. Boulton; Joe G. Hollyfield; John W. Crabb

Lipofuscin accumulates with age in the retinal pigment epithelium (RPE) in discrete granular organelles and may contribute to age-related macular degeneration. Because previous studies suggest that lipofuscin contains protein that may impact pathogenic mechanisms, we pursued proteomics analysis of lipofuscin. The composition of RPE lipofuscin and its mechanisms of pathogenesis are poorly understood in part because of the heterogeneity of isolated preparations. We purified RPE lipofuscin granules by treatment with proteinase K or SDS and showed by light, confocal, and transmission electron microscopy that the purified granules are free of extragranular material and associated membranes. Crude and purified lipofuscin preparations were quantitatively compared by (i) LC MS/MS proteomics analyses, (ii) immunoanalyses of oxidative protein modifications, (iii) amino acid analysis, (iv) HPLC of bisretinoids, and (v) assaying phototoxicity to RPE cells. From crude lipofuscin preparations 186 proteins were identified, many of which appeared to be modified. In contrast, very little protein (∼2% (w/w) by amino acid analysis) and no identifiable protein were found in the purified granules, which retained full phototoxicity to cultured RPE cells. Our analyses showed that granules in purified and crude lipofuscin preparations exhibit no statistically significant differences in diameter or circularity or in the content of the bisretinoids A2E, isoA2E, and all-trans-retinal dimer-phosphatidylethanolamine. The finding that the purified granules contain minimal protein yet retain phototoxic activity suggests that RPE lipofuscin pathogenesis is largely independent of associated protein. The purified granules also exhibited oxidative protein modifications, including nitrotyrosine generated from reactive nitrogen oxide species and carboxyethylpyrrole and iso[4]levuglandin E2 adducts generated from reactive lipid fragments. This finding is consistent with previous studies demonstrating RPE lipofuscin to be a potent generator of reactive oxygen species and supports the hypothesis that such species, including reactive fragments from lipids and retinoids, contribute to the mechanisms of RPE lipofuscin pathogenesis.


Journal of Biological Chemistry | 2006

Light-induced Oxidation of Photoreceptor Outer Segment Phospholipids Generates Ligands for CD36-mediated Phagocytosis by Retinal Pigment Epithelium A POTENTIAL MECHANISM FOR MODULATING OUTER SEGMENT PHAGOCYTOSIS UNDER OXIDANT STRESS CONDITIONS

Mingjiang Sun; Silvia C. Finnemann; Maria Febbraio; Lian Shan; Suresh P. Annangudi; Eugene A. Podrez; George Hoppe; Ruth M. Darrow; Daniel T. Organisciak; Robert G. Salomon; Roy L. Silverstein; Stanley L. Hazen

Clearance by the retinal pigment epithelium (RPE) of shed photoreceptor outer segments (OSs), a tissue with one of the highest turnover rates in the body, is critical to the maintenance and normal function of the retina. We hypothesized that there is a potential role for photo-oxidation in OS uptake by RPE via scavenger receptor-mediated recognition of structurally defined lipid peroxidation products. We now demonstrate that specific structurally defined oxidized species derived from arachidonyl, linoleoyl, and docosahexanoyl phosphatidylcholine may serve as endogenous ligands on OSs for uptake by RPE via the scavenger receptor CD36. Mass spectrometry studies of retinal lipids recovered from dark-adapted rats following physiological light exposure demonstrate in vivo formation of specific oxidized phosphatidylcholine molecular species possessing a CD36 recognition motif, an oxidatively truncated sn-2 acyl group with a terminal γ-hydroxy(or oxo)-α,β-unsaturated carbonyl. Cellular studies using RPE isolated from wild-type versus CD36 null mice suggest that CD36 plays a role in engulfment, but not initial binding, of OSs via these oxidized phospholipids. Parallel increases in OS protein-bound nitrotyrosine, a post-translational modification by nitric oxide (NO)-derived oxidants, were also observed, suggesting a possible role for light-induced generation of NO-derived oxidants in the initiation of OS lipid peroxidation. Collectively, these studies suggest that intense light exposure promotes “oxidative tagging” of photoreceptor outer segments with structurally defined choline glycerophospholipids that may serve as a physiological signal for CD36-mediated phagocytosis under oxidant stress conditions.

Collaboration


Dive into the Robert G. Salomon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary F. Salomon

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Subrata Ghosh

Indian Association for the Cultivation of Science

View shared research outputs
Top Co-Authors

Avatar

James Laird

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Michael G. Zagorski

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel J. Coughlin

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge