Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eugene Berezikov is active.

Publication


Featured researches published by Eugene Berezikov.


Cell | 2005

Phylogenetic shadowing and computational identification of human microRNA genes

Eugene Berezikov; Victor Guryev; Jose van de Belt; Erno Wienholds; Ronald H.A. Plasterk; Edwin Cuppen

We sequenced 122 miRNAs in 10 primate species to reveal conservation characteristics of miRNA genes. Strong conservation is observed in stems of miRNA hairpins and increased variation in loop sequences. Interestingly, a striking drop in conservation was found for sequences immediately flanking the miRNA hairpins. This characteristic profile was employed to predict novel miRNAs using cross-species comparisons. Nine hundred and seventy-six candidate miRNAs were identified by scanning whole-genome human/mouse and human/rat alignments. Most of the novel candidates are conserved also in other vertebrates (dog, cow, chicken, opossum, zebrafish). Northern blot analysis confirmed the expression of mature miRNAs for 16 out of 69 representative candidates. Additional support for the expression of 179 novel candidates can be found in public databases, their presence in gene clusters, and literature that appeared after these predictions were made. Taken together, these results suggest the presence of significantly higher numbers of miRNAs in the human genome than previously estimated.


Science | 2010

Identification of functional elements and regulatory circuits by Drosophila modENCODE

Sushmita Roy; Jason Ernst; Peter V. Kharchenko; Pouya Kheradpour; Nicolas Nègre; Matthew L. Eaton; Jane M. Landolin; Christopher A. Bristow; Lijia Ma; Michael F. Lin; Stefan Washietl; Bradley I. Arshinoff; Ferhat Ay; Patrick E. Meyer; Nicolas Robine; Nicole L. Washington; Luisa Di Stefano; Eugene Berezikov; Christopher D. Brown; Rogerio Candeias; Joseph W. Carlson; Adrian Carr; Irwin Jungreis; Daniel Marbach; Rachel Sealfon; Michael Y. Tolstorukov; Sebastian Will; Artyom A. Alekseyenko; Carlo G. Artieri; Benjamin W. Booth

From Genome to Regulatory Networks For biologists, having a genome in hand is only the beginning—much more investigation is still needed to characterize how the genome is used to help to produce a functional organism (see the Perspective by Blaxter). In this vein, Gerstein et al. (p. 1775) summarize for the Caenorhabditis elegans genome, and The modENCODE Consortium (p. 1787) summarize for the Drosophila melanogaster genome, full transcriptome analyses over developmental stages, genome-wide identification of transcription factor binding sites, and high-resolution maps of chromatin organization. Both studies identified regions of the nematode and fly genomes that show highly occupied targets (or HOT) regions where DNA was bound by more than 15 of the transcription factors analyzed and the expression of related genes were characterized. Overall, the studies provide insights into the organization, structure, and function of the two genomes and provide basic information needed to guide and correlate both focused and genome-wide studies. The Drosophila modENCODE project demonstrates the functional regulatory network of flies. To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation.


Nature Genetics | 2006

Diversity of microRNAs in human and chimpanzee brain

Eugene Berezikov; Fritz Thuemmler; Linda W. van Laake; Ivanela Kondova; Ronald E. Bontrop; Edwin Cuppen; Ronald H.A. Plasterk

We used massively parallel sequencing to compare the microRNA (miRNA) content of human and chimpanzee brains, and we identified 447 new miRNA genes. Many of the new miRNAs are not conserved beyond primates, indicating their recent origin, and some miRNAs seem species specific, whereas others are expanded in one species through duplication events. These data suggest that evolution of miRNAs is an ongoing process and that along with ancient, highly conserved miRNAs, there are a number of emerging miRNAs.


Nature Reviews Genetics | 2011

Evolution of microRNA diversity and regulation in animals.

Eugene Berezikov

In the past decade, microRNAs (miRNAs) have been uncovered as key regulators of gene expression at the post-transcriptional level. The ancient origin of miRNAs, their dramatic expansion in bilaterian animals and their function in providing robustness to transcriptional programmes suggest that miRNAs are instrumental in the evolution of organismal complexity. Advances in understanding miRNA biology, combined with the increasing availability of diverse sequenced genomes, have begun to reveal the molecular mechanisms that underlie the evolution of miRNAs and their targets. Insights are also emerging into how the evolution of miRNA-containing regulatory networks has contributed to organismal complexity.


Nature Genetics | 2006

Approaches to microRNA discovery

Eugene Berezikov; Edwin Cuppen; Ronald H.A. Plasterk

MicroRNAs (miRNAs) are noncoding RNAs that can regulate gene expression. Several hundred genes encoding miRNAs have been experimentally identified in animals, and many more are predicted by computational methods. How can new miRNAs be discovered and distinguished from other types of small RNA? Here we summarize current methods for identifying and validating miRNAs and discuss criteria used to define an miRNA.


Cell | 2009

The TRIM-NHL protein TRIM32 activates microRNAs and prevents self-renewal in mouse neural progenitors.

Jens Christian Schwamborn; Eugene Berezikov; Juergen A. Knoblich

In the mouse neocortex, neural progenitor cells generate both differentiating neurons and daughter cells that maintain progenitor fate. Here, we show that the TRIM-NHL protein TRIM32 regulates protein degradation and microRNA activity to control the balance between those two daughter cell types. In both horizontally and vertically dividing progenitors, TRIM32 becomes polarized in mitosis and is concentrated in one of the two daughter cells. TRIM32 overexpression induces neuronal differentiation while inhibition of TRIM32 causes both daughter cells to retain progenitor cell fate. TRIM32 ubiquitinates and degrades the transcription factor c-Myc but also binds Argonaute-1 and thereby increases the activity of specific microRNAs. We show that Let-7 is one of the TRIM32 targets and is required and sufficient for neuronal differentiation. TRIM32 is the mouse ortholog of Drosophila Brat and Mei-P26 and might be part of a protein family that regulates the balance between differentiation and proliferation in stem cell lineages.


Nature | 2014

The ctenophore genome and the evolutionary origins of neural systems

Leonid L. Moroz; Kevin M. Kocot; Mathew R. Citarella; Sohn Dosung; Tigran P. Norekian; Inna S. Povolotskaya; Anastasia P. Grigorenko; Christopher A. Dailey; Eugene Berezikov; Katherine M. Buckley; Andrey Ptitsyn; Denis Reshetov; Krishanu Mukherjee; Tatiana P. Moroz; Yelena Bobkova; Fahong Yu; Vladimir V. Kapitonov; Jerzy Jurka; Yuri V. Bobkov; Joshua J. Swore; David Orion Girardo; Alexander Fodor; Fedor Gusev; Rachel Sanford; Rebecca Bruders; Ellen L. W. Kittler; Claudia E. Mills; Jonathan P. Rast; Romain Derelle; Victor V. Solovyev

The origins of neural systems remain unresolved. In contrast to other basal metazoans, ctenophores (comb jellies) have both complex nervous and mesoderm-derived muscular systems. These holoplanktonic predators also have sophisticated ciliated locomotion, behaviour and distinct development. Here we present the draft genome of Pleurobrachia bachei, Pacific sea gooseberry, together with ten other ctenophore transcriptomes, and show that they are remarkably distinct from other animal genomes in their content of neurogenic, immune and developmental genes. Our integrative analyses place Ctenophora as the earliest lineage within Metazoa. This hypothesis is supported by comparative analysis of multiple gene families, including the apparent absence of HOX genes, canonical microRNA machinery, and reduced immune complement in ctenophores. Although two distinct nervous systems are well recognized in ctenophores, many bilaterian neuron-specific genes and genes of ‘classical’ neurotransmitter pathways either are absent or, if present, are not expressed in neurons. Our metabolomic and physiological data are consistent with the hypothesis that ctenophore neural systems, and possibly muscle specification, evolved independently from those in other animals.


Molecular Cell | 2008

Piwi and piRNAs Act Upstream of an Endogenous siRNA Pathway to Suppress Tc3 Transposon Mobility in the Caenorhabditis elegans Germline

Partha P. Das; Marloes P. Bagijn; Leonard D. Goldstein; Julie R. Woolford; Nicolas J. Lehrbach; Alexandra Sapetschnig; Heeran R. Buhecha; Michael J. Gilchrist; Kevin L. Howe; Rory Stark; Nik Matthews; Eugene Berezikov; René F. Ketting; Simon Tavaré; Eric A. Miska

The Piwi proteins of the Argonaute superfamily are required for normal germline development in Drosophila, zebrafish, and mice and associate with 24-30 nucleotide RNAs termed piRNAs. We identify a class of 21 nucleotide RNAs, previously named 21U-RNAs, as the piRNAs of C. elegans. Piwi and piRNA expression is restricted to the male and female germline and independent of many proteins in other small-RNA pathways, including DCR-1. We show that Piwi is specifically required to silence Tc3, but not other Tc/mariner DNA transposons. Tc3 excision rates in the germline are increased at least 100-fold in piwi mutants as compared to wild-type. We find no evidence for a Ping-Pong model for piRNA amplification in C. elegans. Instead, we demonstrate that Piwi acts upstream of an endogenous siRNA pathway in Tc3 silencing. These data might suggest a link between piRNA and siRNA function.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Differences in vertebrate microRNA expression

Brandon Ason; Diana K. Darnell; Beate Wittbrodt; Eugene Berezikov; Wigard P. Kloosterman; Jochen Wittbrodt; Parker B. Antin; Ronald H.A. Plasterk

MicroRNAs (miRNAs) attenuate gene expression by means of translational inhibition and mRNA degradation. They are abundant, highly conserved, and predicted to regulate a large number of transcripts. Several hundred miRNA classes are known, and many are associated with cell proliferation and differentiation. Many exhibit tissue-specific expression, which aids in evaluating their functions, and it has been assumed that their high level of sequence conservation implies a high level of expression conservation. A limited amount of data supports this, although discrepancies do exist. By comparing the expression of ≈100 miRNAs in medaka and chicken with existing data for zebrafish and mouse, we conclude that the timing and location of miRNA expression is not strictly conserved. In some instances, differences in expression are associated with changes in miRNA copy number, genomic context, or both between species. Variation in miRNA expression is more pronounced the greater the differences in physiology, and it is enticing to speculate that changes in miRNA expression may play a role in shaping the physiological differences produced during animal development.


The EMBO Journal | 2008

Zili is required for germ cell differentiation and meiosis in zebrafish

Saskia Houwing; Eugene Berezikov; René F. Ketting

Small RNAs exert an effect through diverse RNA interference pathways to transcriptionally or post‐transcriptionally silence their targets. The Piwi‐interacting RNAs (piRNAs) represent a germline‐specific small RNA pathway where Piwi proteins themselves are thought to mediate piRNA biosynthesis. Here, we provide strong evidence for a piRNA amplification loop in zebrafish, in which Ziwi and Zili bind piRNAs of opposite polarity. Furthermore, we describe a function for Zili in transposon defense and germ cell differentiation, as well as a crucial function in meiosis, significantly extending the function of Piwi proteins beyond the control of transposable elements in vertebrates.

Collaboration


Dive into the Eugene Berezikov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronald H.A. Plasterk

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Victor Guryev

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ekaterina S. Ovchinnikova

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Magda Grudniewska

University Medical Center Groningen

View shared research outputs
Researchain Logo
Decentralizing Knowledge