Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where René F. Ketting is active.

Publication


Featured researches published by René F. Ketting.


Nature | 2004

Processing of primary microRNAs by the Microprocessor complex

Ahmet M. Denli; Bastiaan B. J. Tops; Ronald H.A. Plasterk; René F. Ketting; Gregory J. Hannon

Mature microRNAs (miRNAs) are generated via a two-step processing pathway to yield ∼22-nucleotide small RNAs that regulate gene expression at the post-transcriptional level. Initial cleavage is catalysed by Drosha, a nuclease of the RNase III family, which acts on primary miRNA transcripts (pri-miRNAs) in the nucleus. Here we show that Drosha exists in a multiprotein complex, the Microprocessor, and begin the process of deconstructing that complex into its constituent components. Along with Drosha, the Microprocessor also contains Pasha (partner of Drosha), a double-stranded RNA binding protein. Suppression of Pasha expression in Drosophila cells or Caenorhabditis elegans interferes with pri-miRNA processing, leading to an accumulation of pri-miRNAs and a reduction in mature miRNAs. Finally, depletion or mutation of pash-1 in C. elegans causes de-repression of a let-7 reporter and the appearance of phenotypic defects overlapping those observed upon examination of worms with lesions in Dicer (dcr-1) or Drosha (drsh-1). Considered together, these results indicate a role for Pasha in miRNA maturation and miRNA-mediated gene regulation.


Nature | 2003

A micrococcal nuclease homologue in RNAi effector complexes

Amy A. Caudy; René F. Ketting; Scott M. Hammond; Ahmet M. Denli; Anja M. P. Bathoorn; Bastiaan B. J. Tops; Jose Maria Silva; Mike M. Myers; Gregory J. Hannon; Ronald H.A. Plasterk

RNA interference (RNAi) regulates gene expression by the cleavage of messenger RNA, by mRNA degradation and by preventing protein synthesis. These effects are mediated by a ribonucleoprotein complex known as RISC (RNA-induced silencing complex). We have previously identified four Drosophila components (short interfering RNAs, Argonaute 2 (ref. 2), VIG and FXR) of a RISC enzyme that degrades specific mRNAs in response to a double-stranded-RNA trigger. Here we show that Tudor-SN (tudor staphylococcal nuclease)—a protein containing five staphylococcal/micrococcal nuclease domains and a tudor domain—is a component of the RISC enzyme in Caenorhabditis elegans, Drosophila and mammals. Although Tudor-SN contains non-canonical active-site sequences, we show that purified Tudor-SN exhibits nuclease activity similar to that of other staphylococcal nucleases. Notably, both purified Tudor-SN and RISC are inhibited by a specific competitive inhibitor of micrococcal nuclease. Tudor-SN is the first RISC subunit to be identified that contains a recognizable nuclease domain, and could therefore contribute to the RNA degradation observed in RNAi.


PLOS Biology | 2007

Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development.

Wigard P. Kloosterman; Anne Karine Lagendijk; René F. Ketting; Jon D. Moulton; Ronald H.A. Plasterk

Several vertebrate microRNAs (miRNAs) have been implicated in cellular processes such as muscle differentiation, synapse function, and insulin secretion. In addition, analysis of Dicer null mutants has shown that miRNAs play a role in tissue morphogenesis. Nonetheless, only a few loss-of-function phenotypes for individual miRNAs have been described to date. Here, we introduce a quick and versatile method to interfere with miRNA function during zebrafish embryonic development. Morpholino oligonucleotides targeting the mature miRNA or the miRNA precursor specifically and temporally knock down miRNAs. Morpholinos can block processing of the primary miRNA (pri-miRNA) or the pre-miRNA, and they can inhibit the activity of the mature miRNA. We used this strategy to knock down 13 miRNAs conserved between zebrafish and mammals. For most miRNAs, this does not result in visible defects, but knockdown of miR-375 causes defects in the morphology of the pancreatic islet. Although the islet is still intact at 24 hours postfertilization, in later stages the islet cells become scattered. This phenotype can be recapitulated by independent control morpholinos targeting other sequences in the miR-375 precursor, excluding off-target effects as cause of the phenotype. The aberrant formation of the endocrine pancreas, caused by miR-375 knockdown, is one of the first loss-of-function phenotypes for an individual miRNA in vertebrate development. The miRNA knockdown strategy presented here will be widely used to unravel miRNA function in zebrafish.


Nature Biotechnology | 2003

Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics

Jeroen Krijgsveld; René F. Ketting; Tokameh Mahmoudi; Janik Johansen; Marta Artal-Sanz; C. Peter Verrijzer; Ronald H.A. Plasterk; Albert J. R. Heck

A crucial issue in comparative proteomics is the accurate quantification of differences in protein expression levels. To achieve this, several methods have been developed in which proteins are labeled with stable isotopes either in vivo via metabolic labeling or in vitro by protein derivatization. Although metabolic labeling is the only way to obtain labeling of all proteins, it has thus far only been applied to single- celled organisms and cells in culture. Here we describe quantitative 15N metabolic labeling of the multicellular organisms Caenorhabditis elegans, a nematode, and Drosophila melanogaster, the common fruit fly, achieved by feeding them on 15N-labeled Escherichia coli and yeast, respectively. The relative abundance of individual proteins obtained from different samples can then be determined by mass spectrometry (MS). The applicability of the method is exemplified by the comparison of protein expression levels in two C. elegans strains, one with and one without a germ line. The methodology described provides tools for accurate quantitative proteomic studies in these model organisms.


Molecular Cell | 2008

Piwi and piRNAs Act Upstream of an Endogenous siRNA Pathway to Suppress Tc3 Transposon Mobility in the Caenorhabditis elegans Germline

Partha P. Das; Marloes P. Bagijn; Leonard D. Goldstein; Julie R. Woolford; Nicolas J. Lehrbach; Alexandra Sapetschnig; Heeran R. Buhecha; Michael J. Gilchrist; Kevin L. Howe; Rory Stark; Nik Matthews; Eugene Berezikov; René F. Ketting; Simon Tavaré; Eric A. Miska

The Piwi proteins of the Argonaute superfamily are required for normal germline development in Drosophila, zebrafish, and mice and associate with 24-30 nucleotide RNAs termed piRNAs. We identify a class of 21 nucleotide RNAs, previously named 21U-RNAs, as the piRNAs of C. elegans. Piwi and piRNA expression is restricted to the male and female germline and independent of many proteins in other small-RNA pathways, including DCR-1. We show that Piwi is specifically required to silence Tc3, but not other Tc/mariner DNA transposons. Tc3 excision rates in the germline are increased at least 100-fold in piwi mutants as compared to wild-type. We find no evidence for a Ping-Pong model for piRNA amplification in C. elegans. Instead, we demonstrate that Piwi acts upstream of an endogenous siRNA pathway in Tc3 silencing. These data might suggest a link between piRNA and siRNA function.


Cell | 2009

The Argonaute CSR-1 and Its 22G-RNA Cofactors Are Required for Holocentric Chromosome Segregation

Julie M. Claycomb; Pedro J. Batista; Ka Ming Pang; Weifeng Gu; Jessica J. Vasale; Josien C. van Wolfswinkel; Daniel A. Chaves; Masaki Shirayama; Shohei Mitani; René F. Ketting; Darryl Conte; Craig C. Mello

RNAi-related pathways regulate diverse processes, from developmental timing to transposon silencing. Here, we show that in C. elegans the Argonaute CSR-1, the RNA-dependent RNA polymerase EGO-1, the Dicer-related helicase DRH-3, and the Tudor-domain protein EKL-1 localize to chromosomes and are required for proper chromosome segregation. In the absence of these factors chromosomes fail to align at the metaphase plate and kinetochores do not orient to opposing spindle poles. Surprisingly, the CSR-1-interacting small RNAs (22G-RNAs) are antisense to thousands of germline-expressed protein-coding genes. Nematodes assemble holocentric chromosomes in which continuous kinetochores must span the expressed domains of the genome. We show that CSR-1 interacts with chromatin at target loci but does not downregulate target mRNA or protein levels. Instead, our findings support a model in which CSR-1 complexes target protein-coding domains to promote their proper organization within the holocentric chromosomes of C. elegans.


Developmental Cell | 2011

The Many Faces of RNAi

René F. Ketting

Small non-coding RNAs, through association with Argonaute protein family members, have a variety of functions during the development of an organism. Although there is increased mechanistic understanding of the RNA interference (RNAi) pathways surrounding these small RNAs, how their effects are modulated by subcellular compartmentalization and cross-pathway functional interactions is only beginning to be explored. This review examines the current understanding of these aspects of RNAi pathways and the biological functions of these pathways.


The EMBO Journal | 2008

Zili is required for germ cell differentiation and meiosis in zebrafish

Saskia Houwing; Eugene Berezikov; René F. Ketting

Small RNAs exert an effect through diverse RNA interference pathways to transcriptionally or post‐transcriptionally silence their targets. The Piwi‐interacting RNAs (piRNAs) represent a germline‐specific small RNA pathway where Piwi proteins themselves are thought to mediate piRNA biosynthesis. Here, we provide strong evidence for a piRNA amplification loop in zebrafish, in which Ziwi and Zili bind piRNAs of opposite polarity. Furthermore, we describe a function for Zili in transposon defense and germ cell differentiation, as well as a crucial function in meiosis, significantly extending the function of Piwi proteins beyond the control of transposable elements in vertebrates.


Nature Reviews Genetics | 2013

PIWI-interacting RNAs: from generation to transgenerational epigenetics.

Maartje J. Luteijn; René F. Ketting

Small-RNA-guided gene regulation is a recurring theme in biology. Animal germ cells are characterized by an intriguing small-RNA-mediated gene-silencing mechanism known as the PIWI pathway. For a long time, both the biogenesis of PIWI-interacting RNAs (piRNAs) as well as their mode of gene silencing has remained elusive. A recent body of work is shedding more light on both aspects and implicates PIWI in the establishment of transgenerational epigenetic states. In fact, the epigenetic states imposed by PIWI on targets may actually drive piRNA production itself. These findings start to couple small RNA biogenesis with small-RNA-mediated epigenetics.


Current Opinion in Genetics & Development | 2000

The silence of the genes

Ronald H.A. Plasterk; René F. Ketting

About two years ago, it was recognized that introduction of double-stranded RNA (dsRNA) had a potent effect on gene expression, in particular on mRNA stability. Since then, this process has been found to occur in many different organisms, and to bear a strong resemblance to a previously recognized process in plants, called cosuppression. Both genetic and biochemical studies have started to unravel the mysteries of RNA interference: genes involved in this process are being identified and in vitro studies are giving the first hints of what is happening to both the dsRNA and the affected mRNA molecules after the introduction of the dsRNA.

Collaboration


Dive into the René F. Ketting's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew D. Smith

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Meng Zhou

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Michal Mokry

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Christof Niehrs

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Michael Musheev

Armenian National Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ronald H.A. Plasterk

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Eugene Berezikov

University Medical Center Groningen

View shared research outputs
Researchain Logo
Decentralizing Knowledge