Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eugene Chudin is active.

Publication


Featured researches published by Eugene Chudin.


PLOS Biology | 2008

Mapping the Genetic Architecture of Gene Expression in Human Liver

Eric E. Schadt; Cliona Molony; Eugene Chudin; Ke-Ke Hao; Xia Yang; Pek Yee Lum; Andrew Kasarskis; Bin Zhang; Susanna Wang; Christine Suver; Jun Zhu; Joshua Millstein; Solveig K. Sieberts; John Lamb; Debraj GuhaThakurta; Jonathan Derry; John D. Storey; Iliana Avila-Campillo; Mark Kruger; Jason M. Johnson; Carol A. Rohl; Atila van Nas; Margarete Mehrabian; Thomas A. Drake; Aldons J. Lusis; Ryan Smith; F. Peter Guengerich; Stephen C. Strom; Erin G. Schuetz; Thomas H. Rushmore

Genetic variants that are associated with common human diseases do not lead directly to disease, but instead act on intermediate, molecular phenotypes that in turn induce changes in higher-order disease traits. Therefore, identifying the molecular phenotypes that vary in response to changes in DNA and that also associate with changes in disease traits has the potential to provide the functional information required to not only identify and validate the susceptibility genes that are directly affected by changes in DNA, but also to understand the molecular networks in which such genes operate and how changes in these networks lead to changes in disease traits. Toward that end, we profiled more than 39,000 transcripts and we genotyped 782,476 unique single nucleotide polymorphisms (SNPs) in more than 400 human liver samples to characterize the genetic architecture of gene expression in the human liver, a metabolically active tissue that is important in a number of common human diseases, including obesity, diabetes, and atherosclerosis. This genome-wide association study of gene expression resulted in the detection of more than 6,000 associations between SNP genotypes and liver gene expression traits, where many of the corresponding genes identified have already been implicated in a number of human diseases. The utility of these data for elucidating the causes of common human diseases is demonstrated by integrating them with genotypic and expression data from other human and mouse populations. This provides much-needed functional support for the candidate susceptibility genes being identified at a growing number of genetic loci that have been identified as key drivers of disease from genome-wide association studies of disease. By using an integrative genomics approach, we highlight how the gene RPS26 and not ERBB3 is supported by our data as the most likely susceptibility gene for a novel type 1 diabetes locus recently identified in a large-scale, genome-wide association study. We also identify SORT1 and CELSR2 as candidate susceptibility genes for a locus recently associated with coronary artery disease and plasma low-density lipoprotein cholesterol levels in the process.


Biophysical Journal | 1999

Intracellular Ca2+ Dynamics and the Stability of Ventricular Tachycardia

Eugene Chudin; Joshua I. Goldhaber; Alan Garfinkel; James N. Weiss; Boris Kogan

Ventricular fibrillation (VF), the major cause of sudden cardiac death, is typically preceded by ventricular tachycardia (VT), but the mechanisms underlying the transition from VT to VF are poorly understood. Intracellular Ca(2+) overload occurs during rapid heart rates typical of VT and is also known to promote arrhythmias. We therefore studied the role of intracellular Ca(2+) dynamics in the transition from VT to VF, using a combined experimental and mathematical modeling approach. Our results show that 1) rapid pacing of rabbit ventricular myocytes at 35 degrees C led to increased intracellular Ca(2+) levels and complex patterns of action potential (AP) configuration and the intracellular Ca(2+) transients; 2) the complex patterns of the Ca(2+) transient arose directly from the dynamics of intracellular Ca(2+) cycling, and were not merely passive responses to beat-to-beat alterations in AP; 3) the complex Ca(2+) dynamics were simulated in a modified version of the Luo-Rudy (LR) ventricular action potential with improved intracellular Ca(2+) dynamics, and showed good agreement with the experimental findings in isolated myocytes; and 4) when incorporated into simulated two-dimensional cardiac tissue, this action potential model produced a form of spiral wave breakup from VT to a VF-like state in which intracellular Ca(2+) dynamics played a key role through its influence on Ca(2+)-sensitive membrane currents such as I(Ca), I(NaCa), and I(ns(Ca)). To the extent that spiral wave breakup is useful as a model for the transition from VT to VF, these findings suggest that intracellular Ca(2+) dynamics may play an important role in the destabilization of VT and its degeneration into VF.


PLOS Genetics | 2005

Differential Allelic Expression in the Human Genome: A Robust Approach To Identify Genetic and Epigenetic Cis-Acting Mechanisms Regulating Gene Expression

David Serre; Scott Gurd; Bing Ge; Robert Sladek; Donna Sinnett; Eef Harmsen; Marina Bibikova; Eugene Chudin; David L. Barker; Todd Dickinson; Jian Bing Fan; Thomas J. Hudson

The recent development of whole genome association studies has lead to the robust identification of several loci involved in different common human diseases. Interestingly, some of the strongest signals of association observed in these studies arise from non-coding regions located in very large introns or far away from any annotated genes, raising the possibility that these regions are involved in the etiology of the disease through some unidentified regulatory mechanisms. These findings highlight the importance of better understanding the mechanisms leading to inter-individual differences in gene expression in humans. Most of the existing approaches developed to identify common regulatory polymorphisms are based on linkage/association mapping of gene expression to genotypes. However, these methods have some limitations, notably their cost and the requirement of extensive genotyping information from all the individuals studied which limits their applications to a specific cohort or tissue. Here we describe a robust and high-throughput method to directly measure differences in allelic expression for a large number of genes using the Illumina Allele-Specific Expression BeadArray platform and quantitative sequencing of RT-PCR products. We show that this approach allows reliable identification of differences in the relative expression of the two alleles larger than 1.5-fold (i.e., deviations of the allelic ratio larger than 60∶40) and offers several advantages over the mapping of total gene expression, particularly for studying humans or outbred populations. Our analysis of more than 80 individuals for 2,968 SNPs located in 1,380 genes confirms that differential allelic expression is a widespread phenomenon affecting the expression of 20% of human genes and shows that our method successfully captures expression differences resulting from both genetic and epigenetic cis-acting mechanisms.


Genome Research | 2010

Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver

Xia Yang; Bin Zhang; Cliona Molony; Eugene Chudin; Ke Hao; Jun Zhu; Andrea Gaedigk; Christine Suver; Hua Zhong; J. Steven Leeder; F. Peter Guengerich; Stephen C. Strom; Erin G. Schuetz; Thomas H. Rushmore; Roger G. Ulrich; J. Greg Slatter; Eric E. Schadt; Andrew Kasarskis; Pek Yee Lum

Liver cytochrome P450s (P450s) play critical roles in drug metabolism, toxicology, and metabolic processes. Despite rapid progress in the understanding of these enzymes, a systematic investigation of the full spectrum of functionality of individual P450s, the interrelationship or networks connecting them, and the genetic control of each gene/enzyme is lacking. To this end, we genotyped, expression-profiled, and measured P450 activities of 466 human liver samples and applied a systems biology approach via the integration of genetics, gene expression, and enzyme activity measurements. We found that most P450s were positively correlated among themselves and were highly correlated with known regulators as well as thousands of other genes enriched for pathways relevant to the metabolism of drugs, fatty acids, amino acids, and steroids. Genome-wide association analyses between genetic polymorphisms and P450 expression or enzyme activities revealed sets of SNPs associated with P450 traits, and suggested the existence of both cis-regulation of P450 expression (especially for CYP2D6) and more complex trans-regulation of P450 activity. Several novel SNPs associated with CYP2D6 expression and enzyme activity were validated in an independent human cohort. By constructing a weighted coexpression network and a Bayesian regulatory network, we defined the human liver transcriptional network structure, uncovered subnetworks representative of the P450 regulatory system, and identified novel candidate regulatory genes, namely, EHHADH, SLC10A1, and AKR1D1. The P450 subnetworks were then validated using gene signatures responsive to ligands of known P450 regulators in mouse and rat. This systematic survey provides a comprehensive view of the functionality, genetic control, and interactions of P450s.


American Journal of Pathology | 2004

Quantitative Gene Expression Profiling in Formalin- Fixed, Paraffin-Embedded Tissues Using Universal Bead Arrays

Marina Bibikova; Dimitri Talantov; Eugene Chudin; Joanne M. Yeakley; Jing Chen; Dennis Doucet; Eliza Wickham; David Atkins; David L. Barker; Mark S. Chee; Yixin Wang; Jian-Bing Fan

We recently developed a sensitive and flexible gene expression profiling system that is not dependent on an intact poly-A tail and showed that it could be used to analyze degraded RNA samples. We hypothesized that the DASL (cDNA-mediated annealing, selection, extension and ligation) assay might be suitable for the analysis of formalin-fixed, paraffin-embedded tissues, an important source of archival tissue material. We now show that, using the DASL assay system, highly reproducible tissue- and cancer-specific gene expression profiles can be obtained with as little as 50 ng of total RNA isolated from formalin-fixed tissues that had been stored from 1 to over 10 years. Further, tissue- and cancer-specific markers derived from previous genome-wide expression profiling studies of fresh-frozen samples were validated in the formalin-fixed samples. The DASL assay system should prove useful for high-throughput expression profiling of archived clinical samples.


Genome Research | 2011

A survey of the genetics of stomach, liver, and adipose gene expression from a morbidly obese cohort

Danielle M. Greenawalt; Radu Dobrin; Eugene Chudin; Ida J. Hatoum; Christine Suver; John Beaulaurier; Bin Zhang; Victor M. Castro; Jun Zhu; Solveig K. Sieberts; Susanna Wang; Cliona Molony; Steven B. Heymsfield; Daniel M. Kemp; Marc L. Reitman; Pek Yee Lum; Eric E. Schadt; Lee M. Kaplan

To map the genetics of gene expression in metabolically relevant tissues and investigate the diversity of expression SNPs (eSNPs) in multiple tissues from the same individual, we collected four tissues from approximately 1000 patients undergoing Roux-en-Y gastric bypass (RYGB) and clinical traits associated with their weight loss and co-morbidities. We then performed high-throughput genotyping and gene expression profiling and carried out a genome-wide association analyses for more than 100,000 gene expression traits representing four metabolically relevant tissues: liver, omental adipose, subcutaneous adipose, and stomach. We successfully identified 24,531 eSNPs corresponding to about 10,000 distinct genes. This represents the greatest number of eSNPs identified to our knowledge by any study to date and the first study to identify eSNPs from stomach tissue. We then demonstrate how these eSNPs provide a high-quality disease map for each tissue in morbidly obese patients to not only inform genetic associations identified in this cohort, but in previously published genome-wide association studies as well. These data can aid in elucidating the key networks associated with morbid obesity, response to RYGB, and disease as a whole.


BMC Developmental Biology | 2006

Genome wide profiling of human embryonic stem cells (hESCs), their derivatives and embryonal carcinoma cells to develop base profiles of U.S. Federal government approved hESC lines

Ying Liu; Xianmin Zeng; Ming Zhan; Rodolfo Gonzalez; Franz Josef Mueller; Catherine M. Schwartz; Haipeng Xue; Huai Li; Shawn C. Baker; Eugene Chudin; David L. Barker; Timothy K. McDaniel; Steffen Oeser; Jeanne F. Loring; Mark P. Mattson; Mahendra S. Rao

BackgroundIn order to compare the gene expression profiles of human embryonic stem cell (hESC) lines and their differentiated progeny and to monitor feeder contaminations, we have examined gene expression in seven hESC lines and human fibroblast feeder cells using Illumina® bead arrays that contain probes for 24,131 transcript probes.ResultsA total of 48 different samples (including duplicates) grown in multiple laboratories under different conditions were analyzed and pairwise comparisons were performed in all groups. Hierarchical clustering showed that blinded duplicates were correctly identified as the closest related samples. hESC lines clustered together irrespective of the laboratory in which they were maintained. hESCs could be readily distinguished from embryoid bodies (EB) differentiated from them and the karyotypically abnormal hESC line BG01V. The embryonal carcinoma (EC) line NTera2 is a useful model for evaluating characteristics of hESCs. Expression of subsets of individual genes was validated by comparing with published databases, MPSS (Massively Parallel Signature Sequencing) libraries, and parallel analysis by microarray and RT-PCR.Conclusionwe show that Illuminas bead array platform is a reliable, reproducible and robust method for developing base global profiles of cells and identifying similarities and differences in large number of samples.


Human Molecular Genetics | 2009

Common body mass index-associated variants confer risk of extreme obesity

Chris Cotsapas; Elizabeth K. Speliotes; Ida J. Hatoum; Danielle M. Greenawalt; Radu Dobrin; Pek Yee Lum; Christine Suver; Eugene Chudin; Daniel M. Kemp; Marc L. Reitman; Benjamin F. Voight; Benjamin M. Neale; Eric E. Schadt; Joel N. Hirschhorn; Lee M. Kaplan; Mark J. Daly

To investigate the genetic architecture of severe obesity, we performed a genome-wide association study of 775 cases and 3197 unascertained controls at approximately 550,000 markers across the autosomal genome. We found convincing association to the previously described locus including the FTO gene. We also found evidence of association at a further six of 12 other loci previously reported to influence body mass index (BMI) in the general population and one of three associations to severe childhood and adult obesity and that cases have a higher proportion of risk-conferring alleles than controls. We found no evidence of homozygosity at any locus due to identity-by-descent associating with phenotype which would be indicative of rare, penetrant alleles, nor was there excess genome-wide homozygosity in cases relative to controls. Our results suggest that variants influencing BMI also contribute to severe obesity, a condition at the extreme of the phenotypic spectrum rather than a distinct condition.


BMC Genetics | 2009

Accuracy of genome-wide imputation of untyped markers and impacts on statistical power for association studies.

Ke Hao; Eugene Chudin; Joshua McElwee; Eric E. Schadt

BackgroundAlthough high-throughput genotyping arrays have made whole-genome association studies (WGAS) feasible, only a small proportion of SNPs in the human genome are actually surveyed in such studies. In addition, various SNP arrays assay different sets of SNPs, which leads to challenges in comparing results and merging data for meta-analyses. Genome-wide imputation of untyped markers allows us to address these issues in a direct fashion.Methods384 Caucasian American liver donors were genotyped using Illumina 650Y (Ilmn650Y) arrays, from which we also derived genotypes from the Ilmn317K array. On these data, we compared two imputation methods: MACH and BEAGLE. We imputed 2.5 million HapMap Release22 SNPs, and conducted GWAS on ~40,000 liver mRNA expression traits (eQTL analysis). In addition, 200 Caucasian American and 200 African American subjects were genotyped using the Affymetrix 500 K array plus a custom 164 K fill-in chip. We then imputed the HapMap SNPs and quantified the accuracy by randomly masking observed SNPs.ResultsMACH and BEAGLE perform similarly with respect to imputation accuracy. The Ilmn650Y results in excellent imputation performance, and it outperforms Affx500K or Ilmn317K sets. For Caucasian Americans, 90% of the HapMap SNPs were imputed at 98% accuracy. As expected, imputation of poorly tagged SNPs (untyped SNPs in weak LD with typed markers) was not as successful. It was more challenging to impute genotypes in the African American population, given (1) shorter LD blocks and (2) admixture with Caucasian populations in this population. To address issue (2), we pooled HapMap CEU and YRI data as an imputation reference set, which greatly improved overall performance. The approximate 40,000 phenotypes scored in these populations provide a path to determine empirically how the power to detect associations is affected by the imputation procedures. That is, at a fixed false discovery rate, the number of cis-eQTL discoveries detected by various methods can be interpreted as their relative statistical power in the GWAS. In this study, we find that imputation offer modest additional power (by 4%) on top of either Ilmn317K or Ilmn650Y, much less than the power gain from Ilmn317K to Ilmn650Y (13%).ConclusionCurrent algorithms can accurately impute genotypes for untyped markers, which enables researchers to pool data between studies conducted using different SNP sets. While genotyping itself results in a small error rate (e.g. 0.5%), imputing genotypes is surprisingly accurate. We found that dense marker sets (e.g. Ilmn650Y) outperform sparser ones (e.g. Ilmn317K) in terms of imputation yield and accuracy. We also noticed it was harder to impute genotypes for African American samples, partially due to population admixture, although using a pooled reference boosts performance. Interestingly, GWAS carried out using imputed genotypes only slightly increased power on top of assayed SNPs. The reason is likely due to adding more markers via imputation only results in modest gain in genetic coverage, but worsens the multiple testing penalties. Furthermore, cis-eQTL mapping using dense SNP set derived from imputation achieves great resolution, and locate associate peak closer to causal variants than conventional approach.


PLOS ONE | 2011

Predictive Genes in Adjacent Normal Tissue Are Preferentially Altered by sCNV during Tumorigenesis in Liver Cancer and May Rate Limiting

John Lamb; Chunsheng Zhang; Tao Xie; Kai Wang; Bin Zhang; Ke Hao; Eugene Chudin; Hunter B. Fraser; Joshua Millstein; Mark Ferguson; Christine Suver; Irena Ivanovska; Martin L. Scott; Ulrike Philippar; Dimple Bansal; Zhan Zhang; Julja Burchard; Ryan Smith; Danielle M. Greenawalt; Michele A. Cleary; Jonathan Derry; Andrey Loboda; James Watters; Ronnie Tung-Ping Poon; Sheung T. Fan; Chun Yeung; Nikki P. Lee; Justin Guinney; Cliona Molony; Valur Emilsson

Background In hepatocellular carcinoma (HCC) genes predictive of survival have been found in both adjacent normal (AN) and tumor (TU) tissues. The relationships between these two sets of predictive genes and the general process of tumorigenesis and disease progression remains unclear. Methodology/Principal Findings Here we have investigated HCC tumorigenesis by comparing gene expression, DNA copy number variation and survival using ∼250 AN and TU samples representing, respectively, the pre-cancer state, and the result of tumorigenesis. Genes that participate in tumorigenesis were defined using a gene-gene correlation meta-analysis procedure that compared AN versus TU tissues. Genes predictive of survival in AN (AN-survival genes) were found to be enriched in the differential gene-gene correlation gene set indicating that they directly participate in the process of tumorigenesis. Additionally the AN-survival genes were mostly not predictive after tumorigenesis in TU tissue and this transition was associated with and could largely be explained by the effect of somatic DNA copy number variation (sCNV) in cis and in trans. The data was consistent with the variance of AN-survival genes being rate-limiting steps in tumorigenesis and this was confirmed using a treatment that promotes HCC tumorigenesis that selectively altered AN-survival genes and genes differentially correlated between AN and TU. Conclusions/Significance This suggests that the process of tumor evolution involves rate-limiting steps related to the background from which the tumor evolved where these were frequently predictive of clinical outcome. Additionally treatments that alter the likelihood of tumorigenesis occurring may act by altering AN-survival genes, suggesting that the process can be manipulated. Further sCNV explains a substantial fraction of tumor specific expression and may therefore be a causal driver of tumor evolution in HCC and perhaps many solid tumor types.

Collaboration


Dive into the Eugene Chudin's collaboration.

Top Co-Authors

Avatar

Eric E. Schadt

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Zhang

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge