Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark S. Chee is active.

Publication


Featured researches published by Mark S. Chee.


Nature Genetics | 2005

A genome-wide scalable SNP genotyping assay using microarray technology

Kevin L. Gunderson; Grace Lee; Leo G Mendoza; Mark S. Chee

Oligonucleotide probe arrays have enabled massively parallel analysis of gene expression levels from a single cDNA sample. Application of microarray technology to analyzing genomic DNA has been stymied by the sequence complexity of the entire human genome. A robust, single base–resolution direct genomic assay would extend the reach of microarray technology. We developed an array-based whole-genome genotyping assay that does not require PCR and enables effectively unlimited multiplexing. The assay achieves a high signal-to-noise ratio by combining specific hybridization of picomolar concentrations of whole genome–amplified DNA to arrayed probes with allele-specific primer extension and signal amplification. As proof of principle, we genotyped several hundred previously characterized SNPs. The conversion rate, call rate and accuracy were comparable to those of high-performance PCR-based genotyping assays.


Nature Reviews Genetics | 2006

Highly parallel genomic assays

Jian-Bing Fan; Mark S. Chee; Kevin L. Gunderson

Recent developments in highly parallel genome-wide assays are transforming the study of human health and disease. High-resolution whole-genome association studies of complex diseases are finally being undertaken after much hypothesizing about their merit for finding disease loci. The availability of inexpensive high-density SNP-genotyping arrays has made this feasible. Cancer biology will also be transformed by high-resolution genomic and epigenomic analysis. In the future, most cancers might be staged by high-resolution molecular profiling rather than by gross cytological analysis. Here, we describe the key developments that enable highly parallel genomic assays.


BioTechniques | 1999

Using oligonucleotide probe arrays to access genetic diversity

R. J. Lipshutz; D. Morris; Mark S. Chee; E. Hubbell; M. J. Kozal; N. Shah; N. Shen; R. Yang; S. P. A. Fodor

As the Human Genome Project and related efforts identify and determine the DNA sequences of human genes, it is important that highly reliable and efficient mechanisms are found to access individual genetic variation. It is only through a greater understanding of genetic diversity that the true benefit of the Human Genome Project will be realized. One approach, hybridization to high-density arrays of oligonucleotides, is a fast and effective means of accessing this genetic variation. Light-directed chemical synthesis has been used to generate miniaturized, high-density arrays of oligonucleotide probes. Application-specific oligonucleotide probe array designs have been developed for the rapid screening of characterized genes. Dedicated instrumentation and software have been developed for array hybridization, fluorescence detection and data acquisition and analysis. In a specific and challenging application, oligonucleotide probe arrays have been used to screen the reverse transcriptase and protease genes of the highly polymorphic HIV-1 genome to explore genetic diversity and detect mutations conferring resistance to antiviral drugs. Results from this application strongly suggest that oligonucleotide probe arrays will be a powerful tool for rapid investigations in sequence checking, pathogen detection, expression monitoring and DNA molecular recognition.


Nature Biotechnology | 2002

Profiling alternative splicing on fiber-optic arrays

Joanne M. Yeakley; Jian-Bing Fan; Dennis Doucet; Lin Luo; Eliza Wickham; Zhen Ye; Mark S. Chee; Xiang-Dong Fu

The human transcriptome is marked by extensive alternative mRNA splicing and the expression of many closely related genes, which may be difficult to distinguish using standard microarray techniques. Here we describe a sensitive and specific assay for parallel analysis of mRNA isoforms on a fiber-optic microarray platform. The method permits analysis of mRNA transcripts without prior RNA purification or cDNA synthesis. Using an endogenously expressed viral transcript as a model, we demonstrated that the assay readily detects mRNA isoforms from as little as 10–100 pg of total cellular RNA or directly from a few cells. Multiplexed analysis of human cancer cell lines revealed differences in mRNA splicing and suggested a potential autocrine mechanism in the development of choriocarcinomas. Our approach may be useful in the large-scale analysis of the role of alternative splicing in development and disease.


American Journal of Pathology | 2004

Quantitative Gene Expression Profiling in Formalin- Fixed, Paraffin-Embedded Tissues Using Universal Bead Arrays

Marina Bibikova; Dimitri Talantov; Eugene Chudin; Joanne M. Yeakley; Jing Chen; Dennis Doucet; Eliza Wickham; David Atkins; David L. Barker; Mark S. Chee; Yixin Wang; Jian-Bing Fan

We recently developed a sensitive and flexible gene expression profiling system that is not dependent on an intact poly-A tail and showed that it could be used to analyze degraded RNA samples. We hypothesized that the DASL (cDNA-mediated annealing, selection, extension and ligation) assay might be suitable for the analysis of formalin-fixed, paraffin-embedded tissues, an important source of archival tissue material. We now show that, using the DASL assay system, highly reproducible tissue- and cancer-specific gene expression profiles can be obtained with as little as 50 ng of total RNA isolated from formalin-fixed tissues that had been stored from 1 to over 10 years. Further, tissue- and cancer-specific markers derived from previous genome-wide expression profiling studies of fresh-frozen samples were validated in the formalin-fixed samples. The DASL assay system should prove useful for high-throughput expression profiling of archived clinical samples.


Genome Research | 2011

Discovery of non-ETS gene fusions in human prostate cancer using next-generation RNA sequencing

Dorothee Pflueger; Stéphane Terry; Andrea Sboner; Lukas Habegger; Raquel Esgueva; Pei-Chun Lin; Maria A. Svensson; Naoki Kitabayashi; Benjamin Moss; Theresa Y. MacDonald; Xuhong Cao; Terrence R. Barrette; Ashutosh Tewari; Mark S. Chee; Arul M. Chinnaiyan; David S. Rickman; Francesca Demichelis; Mark Gerstein; Mark A. Rubin

Half of prostate cancers harbor gene fusions between TMPRSS2 and members of the ETS transcription factor family. To date, little is known about the presence of non-ETS fusion events in prostate cancer. We used next-generation transcriptome sequencing (RNA-seq) in order to explore the whole transcriptome of 25 human prostate cancer samples for the presence of chimeric fusion transcripts. We generated more than 1 billion sequence reads and used a novel computational approach (FusionSeq) in order to identify novel gene fusion candidates with high confidence. In total, we discovered and characterized seven new cancer-specific gene fusions, two involving the ETS genes ETV1 and ERG, and four involving non-ETS genes such as CDKN1A (p21), CD9, and IKBKB (IKK-beta), genes known to exhibit key biological roles in cellular homeostasis or assumed to be critical in tumorigenesis of other tumor entities, as well as the oncogene PIGU and the tumor suppressor gene RSRC2. The novel gene fusions are found to be of low frequency, but, interestingly, the non-ETS fusions were all present in prostate cancer harboring the TMPRSS2-ERG gene fusion. Future work will focus on determining if the ETS rearrangements in prostate cancer are associated or directly predispose to a rearrangement-prone phenotype.


Genome Biology | 2010

FusionSeq: a modular framework for finding gene fusions by analyzing paired-end RNA-sequencing data.

Andrea Sboner; Lukas Habegger; Dorothee Pflueger; Stéphane Terry; David Chen; Joel Rozowsky; Ashutosh Tewari; Naoki Kitabayashi; Benjamin Moss; Mark S. Chee; Francesca Demichelis; Mark A. Rubin; Mark Gerstein

We have developed FusionSeq to identify fusion transcripts from paired-end RNA-sequencing. FusionSeq includes filters to remove spurious candidate fusions with artifacts, such as misalignment or random pairing of transcript fragments, and it ranks candidates according to several statistics. It also has a module to identify exact sequences at breakpoint junctions. FusionSeq detected known and novel fusions in a specially sequenced calibration data set, including eight cancers with and without known rearrangements.


Nature Methods | 2004

A highly informative SNP linkage panel for human genetic studies

Sarah S. Murray; Arnold Oliphant; Richard Shen; Celeste McBride; Rhoberta Steeke; Stuart G Shannon; Bahram Ghaffarzadeh Kermani; Jian-Bing Fan; Mark S. Chee; Mark Hansen

We have developed a highly informative set of single-nucleotide polymorphism (SNP) assays designed for linkage mapping of the human genome. These assays were developed on a robust multiplexed assay system to provide a combination of very high accuracy and data completeness with high throughput for linkage studies. The linkage panel is comprised of approximately 4,700 SNPs with 0.39 average minor allele frequency and 624-kb average spacing. Based on almost 2 million genotypes, data quality was shown to be extremely high, with a 99.94% call rate, >99.99% reproducibility and 99.995% genotypes consistent with mendelian inheritance. We constructed a genetic map with an average 1.5-cM resolution using series of 28 CEPH pedigrees. The relative information content of this panel was higher than those of commonly used STR marker panels. The potent combination of this SNP linkage panel with the multiplexed assay system provides a previously unattainable level of performance for linkage studies.


Genome Research | 2009

Microarray-based multicycle-enrichment of genomic subsets for targeted next-generation sequencing

Daniel Summerer; Haiguo Wu; Bettina Haase; Yang Cheng; Nadine Schracke; Cord F. Stähler; Mark S. Chee; Peer F. Stähler; Markus Beier

The lack of efficient high-throughput methods for enrichment of specific sequences from genomic DNA represents a key bottleneck in exploiting the enormous potential of next-generation sequencers. Such methods would allow for a systematic and targeted analysis of relevant genomic regions. Recent studies reported sequence enrichment using a hybridization step to specific DNA capture probes as a possible solution to the problem. However, so far no method has provided sufficient depths of coverage for reliable base calling over the entire target regions. We report a strategy to multiply the enrichment performance and consequently improve depth and breadth of coverage for desired target sequences by applying two iterative cycles of hybridization with microfluidic Geniom biochips. Using this strategy, we enriched and then sequenced the cancer-related genes BRCA1 and TP53 and a set of 1000 individual dbSNP regions of 500 bp using Illumina technology. We achieved overall enrichment factors of up to 1062-fold and average coverage depths of 470-fold. Combined with high coverage uniformity, this resulted in nearly complete consensus coverages with >86% of target region covered at 20-fold or higher. Analysis of SNP calling accuracies after enrichment revealed excellent concordance, with the reference sequence closely mirroring the previously reported performance of Illumina sequencing conducted without sequence enrichment.


PLOS ONE | 2012

New Details of HCV NS3/4A Proteinase Functionality Revealed by a High-Throughput Cleavage Assay

Sergey A. Shiryaev; Elliot R. Thomsen; Piotr Cieplak; Eugene Chudin; Anton Cheltsov; Mark S. Chee; Igor A. Kozlov; Alex Y. Strongin

Background The hepatitis C virus (HCV) genome encodes a long polyprotein, which is processed by host cell and viral proteases to the individual structural and non-structural (NS) proteins. HCV NS3/4A serine proteinase (NS3/4A) is a non-covalent heterodimer of the N-terminal, ∼180-residue portion of the 631-residue NS3 protein with the NS4A co-factor. NS3/4A cleaves the polyprotein sequence at four specific regions. NS3/4A is essential for viral replication and has been considered an attractive drug target. Methodology/Principal Findings Using a novel multiplex cleavage assay and over 2,660 peptide sequences derived from the polyprotein and from introducing mutations into the known NS3/4A cleavage sites, we obtained the first detailed fingerprint of NS3/4A cleavage preferences. Our data identified structural requirements illuminating the importance of both the short-range (P1–P1′) and long-range (P6-P5) interactions in defining the NS3/4A substrate cleavage specificity. A newly observed feature of NS3/4A was a high frequency of either Asp or Glu at both P5 and P6 positions in a subset of the most efficient NS3/4A substrates. In turn, aberrations of this negatively charged sequence such as an insertion of a positively charged or hydrophobic residue between the negatively charged residues resulted in inefficient substrates. Because NS5B misincorporates bases at a high rate, HCV constantly mutates as it replicates. Our analysis revealed that mutations do not interfere with polyprotein processing in over 5,000 HCV isolates indicating a pivotal role of NS3/4A proteolysis in the virus life cycle. Conclusions/Significance Our multiplex assay technology in light of the growing appreciation of the role of proteolytic processes in human health and disease will likely have widespread applications in the proteolysis research field and provide new therapeutic opportunities.

Collaboration


Dive into the Mark S. Chee's collaboration.

Researchain Logo
Decentralizing Knowledge