Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eugene V. Mosharov is active.

Publication


Featured researches published by Eugene V. Mosharov.


Journal of Clinical Investigation | 2008

Dopamine-modified α-synuclein blocks chaperone-mediated autophagy

Marta Martinez-Vicente; Zsolt Tallóczy; Susmita Kaushik; Ashish C. Massey; Joseph R. Mazzulli; Eugene V. Mosharov; Roberto Hodara; Ross A. Fredenburg; Du Chu Wu; Antonia Follenzi; William T. Dauer; Serge Przedborski; Harry Ischiropoulos; Peter T. Lansbury; David Sulzer; Ana Maria Cuervo

Altered degradation of alpha-synuclein (alpha-syn) has been implicated in the pathogenesis of Parkinson disease (PD). We have shown that alpha-syn can be degraded via chaperone-mediated autophagy (CMA), a selective lysosomal mechanism for degradation of cytosolic proteins. Pathogenic mutants of alpha-syn block lysosomal translocation, impairing their own degradation along with that of other CMA substrates. While pathogenic alpha-syn mutations are rare, alpha-syn undergoes posttranslational modifications, which may underlie its accumulation in cytosolic aggregates in most forms of PD. Using mouse ventral medial neuron cultures, SH-SY5Y cells in culture, and isolated mouse lysosomes, we have found that most of these posttranslational modifications of alpha-syn impair degradation of this protein by CMA but do not affect degradation of other substrates. Dopamine-modified alpha-syn, however, is not only poorly degraded by CMA but also blocks degradation of other substrates by this pathway. As blockage of CMA increases cellular vulnerability to stressors, we propose that dopamine-induced autophagic inhibition could explain the selective degeneration of PD dopaminergic neurons.


Neuron | 2009

Interplay between Cytosolic Dopamine, Calcium, and α-Synuclein Causes Selective Death of Substantia Nigra Neurons

Eugene V. Mosharov; Kristin E. Larsen; Ellen Kanter; Kester A. Phillips; Krystal Wilson; Yvonne Schmitz; David E. Krantz; Kazuto Kobayashi; Robert H. Edwards; David Sulzer

The basis for selective death of specific neuronal populations in neurodegenerative diseases remains unclear. Parkinsons disease (PD) is a synucleinopathy characterized by a preferential loss of dopaminergic neurons in the substantia nigra (SN), whereas neurons of the ventral tegmental area (VTA) are spared. Using intracellular patch electrochemistry to directly measure cytosolic dopamine (DA(cyt)) in cultured midbrain neurons, we confirm that elevated DA(cyt) and its metabolites are neurotoxic and that genetic and pharmacological interventions that decrease DA(cyt) provide neuroprotection. L-DOPA increased DA(cyt) in SN neurons to levels 2- to 3-fold higher than in VTA neurons, a response dependent on dihydropyridine-sensitive Ca2+ channels, resulting in greater susceptibility of SN neurons to L-DOPA-induced neurotoxicity. DA(cyt) was not altered by alpha-synuclein deletion, although dopaminergic neurons lacking alpha-synuclein were resistant to L-DOPA-induced cell death. Thus, an interaction between Ca2+, DA(cyt), and alpha-synuclein may underlie the susceptibility of SN neurons in PD, suggesting multiple therapeutic targets.


The Journal of Neuroscience | 2006

α-Synuclein Overexpression in PC12 and Chromaffin Cells Impairs Catecholamine Release by Interfering with a Late Step in Exocytosis

Kristin E. Larsen; Yvonne Schmitz; Matthew D. Troyer; Eugene V. Mosharov; Paula Dietrich; Abrar Z. Quazi; Magali Savalle; Venu M. Nemani; Farrukh A. Chaudhry; Robert H. Edwards; Leonidas Stefanis; David Sulzer

α-Synuclein (α-syn), a protein implicated in Parkinsons disease pathogenesis, is a presynaptic protein suggested to regulate transmitter release. We explored how α-syn overexpression in PC12 and chromaffin cells, which exhibit low endogenous α-syn levels relative to neurons, affects catecholamine release. Overexpression of wild-type or A30P mutant α-syn in PC12 cell lines inhibited evoked catecholamine release without altering calcium threshold or cooperativity of release. Electron micrographs revealed that vesicular pools were not reduced but that, on the contrary, a marked accumulation of morphologically “docked” vesicles was apparent in the α-syn-overexpressing lines. We used amperometric recordings from chromaffin cells derived from mice that overexpress A30P or wild-type (WT) α-syn, as well as chromaffin cells from control and α-syn null mice, to determine whether the filling of vesicles with the transmitter was altered. The quantal size and shape characteristics of amperometric events were identical for all mouse lines, suggesting that overexpression of WT or mutant α-syn did not affect vesicular transmitter accumulation or the kinetics of vesicle fusion. The frequency and number of exocytotic events per stimulus, however, was lower for both WT and A30P α-syn-overexpressing cells. The α-syn-overexpressing cells exhibited reduced depression of evoked release in response to repeated stimuli, consistent with a smaller population of readily releasable vesicles. We conclude that α-syn overexpression inhibits a vesicle “priming” step, after secretory vesicle trafficking to “docking” sites but before calcium-dependent vesicle membrane fusion.


Nature Neuroscience | 2004

Dopamine neurons release transmitter via a flickering fusion pore

Roland G. W. Staal; Eugene V. Mosharov; David Sulzer

A key question in understanding mechanisms of neurotransmitter release is whether the fusion pore of a synaptic vesicle regulates the amount of transmitter released during exocytosis. We measured dopamine release from small synaptic vesicles of rat cultured ventral midbrain neurons using carbon fiber amperometry. Our data indicate that small synaptic vesicle fusion pores flicker either once or multiple times in rapid succession, with each flicker releasing ∼25–30% of vesicular dopamine. The incidence of events with multiple flickers was reciprocally regulated by phorbol esters and staurosporine. Thus, dopamine neurons regulate the amount of neurotransmitter released by small synaptic vesicles by controlling the number of fusion pore flickers per exocytotic event. This mode of exocytosis is a potential mechanism whereby neurons can rapidly reuse vesicles without undergoing the comparatively slow process of recycling.


Nature Methods | 2005

Analysis of exocytotic events recorded by amperometry.

Eugene V. Mosharov; David Sulzer

Amperometry is widely used to study exocytosis of neurotransmitters and hormones in various cell types. Analysis of the shape of the amperometric spikes that originate from the oxidation of monoamine molecules released during the fusion of individual secretory vesicles provides information about molecular steps involved in stimulation-dependent transmitter release. Here we present an overview of the methodology of amperometric signal processing, including (i) amperometric signal acquisition and filtering, (ii) detection of exocytotic events and determining spike shape characteristics, and (iii) data manipulation and statistical analysis. The purpose of this review is to provide practical guidelines for performing amperometric recordings of exocytotic activity and interpreting the results based on shape characteristics of individual release events.


The Journal of Neuroscience | 2006

α-Synuclein Overexpression Increases Cytosolic Catecholamine Concentration

Eugene V. Mosharov; Roland G. W. Staal; Jordi Bové; Delphine Prou; Anthonia Hananiya; Dmitriy Markov; Nathan W. Poulsen; Kristin E. Larsen; Candace M. H. Moore; Matthew D. Troyer; Robert H. Edwards; Serge Przedborski; David Sulzer

Dysregulation of dopamine homeostasis and elevation of the cytosolic level of the transmitter have been suggested to underlie the vulnerability of catecholaminergic neurons in Parkinson’s disease. Because several known mutations in α-synuclein or overexpression of the wild-type (WT) protein causes familial forms of Parkinson’s disease, we investigated possible links between α-synuclein pathogenesis and dopamine homeostasis. Chromaffin cells isolated from transgenic mice that overexpress A30P α-synuclein displayed significantly increased cytosolic catecholamine levels as measured by intracellular patch electrochemistry, whereas cells overexpressing the WT protein and those from knock-out animals were not different from controls. Likewise, catechol concentrations were higher in l-DOPA-treated PC12 cells overexpressing A30P or A53T compared with those expressing WT α-synuclein, although the ability of cells to maintain a low cytosolic dopamine level after l-DOPA challenge was markedly inhibited by either protein. We also found that incubation with low-micromolar concentrations of WT, A30P, or A53T α-synuclein inhibited ATP-dependent maintenance of pH gradients in isolated chromaffin vesicles and that the WT protein was significantly less potent in inducing the proton leakage. In summary, we demonstrate that overexpression of different types of α-synuclein disrupts vesicular pH and leads to a marked increase in the levels of cytosolic catechol species, an effect that may in turn trigger cellular oxyradical damage. Although multiple molecular mechanisms may be responsible for the perturbation of cytosolic catecholamine homeostasis, this study provides critical evidence about how α-synuclein might exert its cytotoxicity and selectively damage catecholaminergic cells.


Journal of Cell Biology | 2005

SNAREs can promote complete fusion and hemifusion as alternative outcomes

Claudio G. Giraudo; Chuan Hu; Daoqi You; Avram M. Slovic; Eugene V. Mosharov; David Sulzer; Thomas J. Melia

Using a cell fusion assay, we show here that in addition to complete fusion SNAREs also promote hemifusion as an alternative outcome. Approximately 65% of events resulted in full fusion, and the remaining 35% in hemifusion; of those, approximately two thirds were permanent and approximately one third were reversible. We predict that this relatively close balance among outcomes could be tipped by binding of regulatory proteins to the SNAREs, allowing for dynamic physiological regulation between full fusion and reversible kiss-and-run–like events.


Nature Biotechnology | 2015

Optogenetics enables functional analysis of human embryonic stem cell-derived grafts in a Parkinson's disease model

Julius A. Steinbeck; Se Joon Choi; Ana Mrejeru; Yosif Ganat; Karl Deisseroth; David Sulzer; Eugene V. Mosharov; Lorenz Studer

Recent studies have shown evidence of behavioral recovery after transplantation of human pluripotent stem cell (PSC)-derived neural cells in animal models of neurological disease. However, little is known about the mechanisms underlying graft function. Here we use optogenetics to modulate in real time electrophysiological and neurochemical properties of mesencephalic dopaminergic (mesDA) neurons derived from human embryonic stem cells (hESCs). In mice that had recovered from lesion-induced Parkinsonian motor deficits, light-induced selective silencing of graft activity rapidly and reversibly re-introduced the motor deficits. The re-introduction of motor deficits was prevented by the dopamine agonist apomorphine. These results suggest that functionality depends on graft neuronal activity and dopamine release. Combining optogenetics, slice electrophysiology and pharmacological approaches, we further show that mesDA-rich grafts modulate host glutamatergic synaptic transmission onto striatal medium spiny neurons in a manner reminiscent of endogenous mesDA neurons. Thus, application of optogenetics in cell therapy can link transplantation, animal behavior and postmortem analysis to enable the identification of mechanisms that drive recovery.


Journal of Neurochemistry | 2008

Neuronal pigmented autophagic vacuoles: lipofuscin, neuromelanin, and ceroid as macroautophagic responses during aging and disease

David Sulzer; Eugene V. Mosharov; Zsolt Tallóczy; Fabio A. Zucca; John D. Simon; Luigi Zecca

The most striking morphologic change in neurons during normal aging is the accumulation of autophagic vacuoles filled with lipofuscin or neuromelanin pigments. These organelles are similar to those containing the ceroid pigments associated with neurologic disorders, particularly in diseases caused by lysosomal dysfunction. The pigments arise from incompletely degraded proteins and lipids principally derived from the breakdown of mitochondria or products of oxidized catecholamines. Pigmented autophagic vacuoles may eventually occupy a major portion of the neuronal cell body volume because of resistance of the pigments to lysosomal degradation and/or inadequate fusion of the vacuoles with lysosomes. Although the formation of autophagic vacuoles via macroautophagy protects the neuron from cellular stress, accumulation of pigmented autophagic vacuoles may eventually interfere with normal degradative pathways and endocytic/secretory tasks such as appropriate response to growth factors.


Science | 2009

Fluorescent False Neurotransmitters Visualize Dopamine Release from Individual Presynaptic Terminals

Niko G. Gubernator; Hui Zhang; Roland G. W. Staal; Eugene V. Mosharov; Daniela B. Pereira; Minerva Yue; Vojtech Balsanek; Paul A. Vadola; Bipasha Mukherjee; Robert H. Edwards; David Sulzer; Dalibor Sames

Neurotransmission in Living Color Neurotransmission involves the release of small molecular neurotransmitters from one neuron to another across a synapse. Gubernator et al. (p. 1441, published online 7 May) introduce a means to observe neurotransmitter release optically, by the design of fluorescent false neurotransmitters, which act as substrates for the synaptic vesicle monoamine transporter. These endogenous monoamine optical tracers enabled visualization of neurotransmitter uptake and release from individual synaptic terminals and were used to evaluate dopamine neurotransmission in the striatum. The fraction of synaptic vesicles that release neurotransmitter per stimulus was frequency dependent, and a frequency-dependent selection of presynaptic terminals was observed. Optical tracking of neurotransmitter release in the brain reveals multiple synaptic populations that depend on brain activity. The nervous system transmits signals between neurons via neurotransmitter release during synaptic vesicle fusion. In order to observe neurotransmitter uptake and release from individual presynaptic terminals directly, we designed fluorescent false neurotransmitters as substrates for the synaptic vesicle monoamine transporter. Using these probes to image dopamine release in the striatum, we made several observations pertinent to synaptic plasticity. We found that the fraction of synaptic vesicles releasing neurotransmitter per stimulus was dependent on the stimulus frequency. A kinetically distinct “reserve” synaptic vesicle population was not observed under these experimental conditions. A frequency-dependent heterogeneity of presynaptic terminals was revealed that was dependent in part on D2 dopamine receptors, indicating a mechanism for frequency-dependent coding of presynaptic selection.

Collaboration


Dive into the Eugene V. Mosharov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Se Joon Choi

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yvonne Schmitz

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kristin E. Larsen

Columbia University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge