Eugenio Carretta
INAF
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eugenio Carretta.
The Astronomy and Astrophysics Review | 2012
R. Gratton; Eugenio Carretta; A. Bragaglia
Recent progress in studies of globular clusters has shown that they are not simple stellar populations, but rather are made up of multiple generations. Evidence stems both from photometry and spectroscopy. A new paradigm is arising for the formation of massive star clusters, which includes several episodes of star formation. While this provides an explanation for several features of globular clusters, including the second-parameter problem, it also opens new perspectives on the relation between globular clusters and the halo of our Galaxy, and by extension on all populations with a high specific frequency of globular clusters, such as, e.g., giant elliptical galaxies. We review progress in this area, focussing on the most recent studies. Several points remain to become properly understood, in particular those concerning the nature of the polluters producing the abundance pattern in the clusters and the typical timescale, the range of cluster masses where this phenomenon is active, and the relation between globular clusters and other satellites of our Galaxy.
Astronomy and Astrophysics | 2009
Eugenio Carretta; A. Bragaglia; R. Gratton; Sara Lucatello; G. Catanzaro; F. Leone; M. Bellazzini; R. U. Claudi; V. D'Orazi; Y. Momany; S. Ortolani; E. Pancino; G. Piotto; A. Recio-Blanco; Elena Sabbi
We present abundances of Fe, Na, and O for 1409 red giant stars in 15 galactic globular clusters (GCs), derived from the homogeneous analysis of high-resolution FLAMES/GIRAFFE spectra. Combining the present data with results from our FLAMES/UVES spectra and from previous studies within the project, we obtained a total sample of 1958 stars in 19 clusters, the largest and most homogeneous database of this kind to date. The programme clusters cover a range in metallicity from [Fe/H] = −2. 4d ex to [Fe/H] = −0.4 dex, with a wide variety of global parameters (morphology of the horizontal branch, mass, concentration, etc.). For all clusters we find the Na-O anticorrelation, the classical signature of the operation of proton-capture reactions in H-burning at high temperature in a previous generation of more massive stars that are now extinct. Using quantitative criteria (from the morphology and extension of the Na-O anticorrelation), we can define three different components of the stellar population in GCs. We separate a primordial component (P) of first-generation stars, and two components of second-generation stars, that we name intermediate (I) and extreme (E) populations from their different chemical composition. The P component is present in all clusters, and its fraction is almost constant at about one third. The I component represents the bulk of the cluster population. On the other hand, E component is not present in all clusters, and it is more conspicuous in some (but not in all) of the most massive clusters. We discuss the fractions and spatial distributions of these components in our sample and in two additional clusters (M 3 = NGC 5272 and M 13 = NGC6205) with large sets of stars analysed in the literature. We also find that the slope of the anti-correlation (defined by the minimum O and maximum Na abundances) changes from cluster-to-cluster, a change that is represented well by a bilinear relation on cluster metallicity and luminosity. This second dependence suggests a correlation between average mass of polluters and cluster mass.
Astronomy and Astrophysics | 2001
R. Gratton; P. Bonifacio; A. Bragaglia; Eugenio Carretta; V. Castellani; Miriam Centurion; A. Chieffi; Riccardo U. Claudi; G. Clementini; F. D'Antona; S. Desidera; Patrick Francois; F. Grundahl; Sara Lucatello; Paolo Molaro; Luca Pasquini; Christopher Sneden; F. Spite; Oscar Straniero
High dispersion spectra (R > 40 000) for a quite large number of stars at the main sequence turn-o and at the base of the giant branch in NGC 6397 and NGC 6752 were obtained with the UVES on Kueyen (VLT UT2). The (Fe/H) values we found are 2:03 0:02 0:04 and 1:42 0:02 0:04 for NGC 6397 and NGC 6752 respectively, where the rst error bars refer to internal and the second ones to systematic errors (within the abundance scale dened by our analysis of 25 subdwarfs with good Hipparcos parallaxes). In both clusters the (Fe/H)s obtained for TO-stars agree perfectly (within a few percent) with that obtained for stars at the base of the RGB. The (O=Fe) = 0:21 0:05 value we obtain for NGC 6397 is quite low, but it agrees with previous results obtained for giants in this cluster. Moreover, the star-to-star scatter in both O and Fe is very small, indicating that this small mass cluster is chemically very homogenous. On the other hand, our results show clearly and for the rst time that the O-Na anticorrelation (up to now seen only for stars on the red giant branches of globular clusters) is present among unevolved stars in the globular cluster NGC 6752, a more massive cluster than NGC 6397. A similar anticorrelation is present also for Mg and Al, and C and N. It is very dicult to explain the observed Na-O, and Mg-Al anticorrelation in NGC 6752 stars by a deep mixing scenario; we think it requires some non internal mechanism.
Astronomy and Astrophysics | 2009
Eugenio Carretta; A. Bragaglia; R. Gratton; V. D'Orazi; Sara Lucatello
We have collected spectra of about 2000 red giant branch (RGB) stars in 19 Galactic globular clusters (GC) using FLAMES@VLT (about 100 stars with GIRAFFE and about 10 with UVES, respectively, in each GC). These observations provide an unprecedented, precise, and homogeneous data-set of Fe abundances in GCs. We use it to study the cosmic scatter of iron and find that, as far as Fe is concerned, most GCs can still be considered mono-metallic, since the upper limit to the scatter of iron is less than 0.05 dex, meaning that the degree of homogeneity is better than 12%. The scatter in Fe we find seems to have a dependence on luminosity, possibly due to the well-known inadequacies of stellar atmospheres for upper-RGB stars and/or to intrinsic variability. It also seems to be correlated with cluster properties, like the mass, indicating a larger scatter in more massive GCs which is likely a (small) true intrinsic scatter. The 19 GCs, covering the metallicity range of the bulk of Galactic GCs, define an accurate and updated metallicity scale. We provide transformation equations for a few existing scales. We also provide new values of [Fe/H], on our scale, for all GCs in the Harris catalogue.
Astronomy and Astrophysics | 2009
Eugenio Carretta; A. Bragaglia; R. Gratton; Sara Lucatello
We present homogeneous abundance determinations for iron and some of the elements involved in the proton-capture reactions (O, Na, Mg, Al, and Si) for 202 red giants in 17 Galactic globular clusters (GCs) from the analysis of high-resolution UVES spectra obtained with the FLAMES facility at the ESO VLT2 telescope. Our programme clusters span almost the whole range of the metallicity distribution of GCs and were selected to sample the widest range of global parameters (horizontal-branch morphology, masses, concentration, etc.). In this paper we focus on the discussion of the Na-O and Mg-Al anticorrelations and related issues. Our study finds clear Na and O star-to-star abundance variations, exceeding those expected from the error in the analysis, in all clusters. Variations in Al are present in all but a few GCs. Finally, a spread in abundances of Mg and Si are also present in a few clusters. Mg is slightly less overabundant and Si slightly more overabundant in the most Al-rich stars. The correlation between Si and Al abundances is a signature of production of 28 Si leaking from the Mg-Al cycle in a few clusters. The cross sections required for the proper reactions to take over in the cycle point to temperatures in excess of about 65 million K for the favoured site of production. We used a dilution model to infer the total range of Al abundances starting from the Na and Al abundances in the FLAMES-UVES spectra, and the Na abundance distributions found from analysis of the much larger set of stars for which FLAMES-GIRAFFE spectra were available. We found that the maximum amount of additional Al produced by first-generation polluters contributing to the composition of the second-generation stars in each cluster is closely correlated with the same combination of metallicity and cluster luminosity that reproduced the minimum O-abundances found from GIRAFFE spectra. We then suggest that the high temperatures required for the Mg-Al cycle are only reached in the most massive and most metal-poor polluters.
Astronomy and Astrophysics | 2010
Eugenio Carretta; A. Bragaglia; R. Gratton; A. Recio-Blanco; Sara Lucatello; V. D'Orazi; Santi Cassisi
We revise the scenario of the formation of Galactic globular clusters (GCs) by adding the observed detailed chemical composition of their different stellar generations to the set of their global parameters. We exploit the unprecedented set of homogeneous abundances of more than 1200 red giants in 19 clusters, as well as additional data from literature, to give a new definition of bona fide GCs, as the stellar aggregates showing the Na-O anticorrelation. We propose a classification of GCs according to their kinematics and location in the Galaxy in three populations: disk/bulge, inner halo, and outer halo. We find that the luminosity function of GCs is fairly independent of their population, suggesting that it is imprinted by the formation mechanism only marginally affected by the ensuing evolution. We show that a large fraction of the primordial population should have been lost by the proto-GCs. The extremely low Al abundances found for the primordial population of massive GCs indicate a very fast enrichment process before the formation of the primordial population. We suggest a scenario for the formation of GCs that includes at least three main phases: i) the formation of a precursor population (likely due to the interaction of cosmological structures similar to those that led to the formation of dwarf spheroidals, but residing at smaller Galactocentric distances, with the early Galaxy or with other structures); ii) the triggering of a long episode of star formation (the primordial population) from the precursor population; and iii) the formation of the current GC, mainly within a cooling flow formed by the slow winds of a fraction of the primordial population. The precursor population is very effective in raising the metal content in massive and/or metal-poor (mainly halo) clusters, while its role is minor in small and/or metal-rich (mainly disk) ones. Finally, we use principal component analysis and multivariate relations to study the phase of metal enrichment from first to second generation. We conclude that most of the chemical signatures of GCs may be ascribed to a few parameters, the most important being metallicity, mass, and cluster age. Location within the Galaxy (as described by the kinematics) also plays some role, while additional parameters are required to describe their dynamical status.
The Astrophysical Journal | 2000
Eugenio Carretta; R. Gratton; G. Clementini; Flavio Fusi Pecci
We review the results on distances and absolute ages of Galactic globular clusters (GCs) obtained after the release of the Hipparcos catalog. Several methods aimed at the definition of the Population II local distance scale are discussed, and their results compared, exploiting new results for RR Lyraes in the Large Magellanic Cloud (LMC). We find that the so-called short distance and long distance scales may be reconciled whether or not a consistent reddening scale is adopted for Cepheids and RR Lyrae variables in the LMC. Emphasis is given in the paper to the discussion of distances and ages of GCs derived using Hipparcos parallaxes of local subdwarfs. We find that the selection criteria adopted to choose the local subdwarfs, as well as the size of the corrections applied to existing systematic biases, are the main culprit for the differences found among the various independent studies that first used Hipparcos parallaxes and the subdwarf fitting technique. We also caution that the absolute age of M92 (usually considered one of the oldest clusters) still remains uncertain due to the lack of subdwarfs of comparable metallicity with accurate parallaxes. Distances and ages for the nine clusters discussed in a previous paper by Gratton et al. are rederived using an enlarged sample of local subdwarfs, which includes about 90% of the metal-poor dwarfs with accurate parallaxes (Δπ/π ≤ 0.12) in the whole Hipparcos catalog. On average, our revised distance moduli are decreased by 0.04 mag with respect to Gratton et al. The corresponding age of the GCs is t = 11.5 ± 2.6 Gyr, where the error bars refer to the 95% confidence range. The relation between the zero-age horizontal branch (ZAHB) absolute magnitude and metallicity for the nine program clusters turns out to be MV(ZAHB) = (0.18 ± 0.09)([Fe/H] + 1.5) + (0.53 ± 0.12) Thanks to Hipparcos the major contribution to the total error budget associated with the subdwarf fitting technique has been moved from parallaxes to photometric calibrations, reddening, and metallicity scale. This total uncertainty still amounts to about ±0.12 mag. We then compare the corresponding (true) LMC distance modulus μLMC = 18.64 ± 0.12 mag with other existing determinations. We conclude that at present the best estimate for the distance of the LMC is μLMC = 18.54 ± 0.03 ± 0.06, suggesting that distances from the subdwarf fitting method are ~1 σ too long. Consequently, our best estimate for the age of the GCs is revised to Age = 12.9 ± 2.9 Gyr (95% confidence range). The best relation between ZAHB absolute magnitude and metallicity is MV(ZAHB) = (0.18 ± 0.09)( + 1.5) + (0.63 ± 0.07). Finally, we compare the ages of the GCs with the cosmic star formation rate recently determined by studies of the Hubble Deep Field (HDF), exploiting the determinations of ΩM = 0.3 and ΩΛ = 0.7 provided by Type Ia supernovae surveys. We find that the epoch of formation of the GCs (at z ~ 3) matches well the maximum of the star formation rate for elliptical galaxies in the HDF as determined by Franceschini et al.
The Astrophysical Journal | 1997
R. Gratton; Flavio Fusi Pecci; Eugenio Carretta; G. Clementini; Carlo Corsi; M. G. Lattanzi
We report here initial but strongly conclusive results for absolute ages of Galactic globular clusters (GGCs). This study is based on high-precision trigonometric parallaxes from the HIPPARCOS satellite coupled with accurate metal abundances ([Fe/H], [O/Fe], and [α/Fe]) from high-resolution spectroscopy for a sample of about thirty subdwarfs. Systematic effects due to star selection (Lutz-Kelker corrections to parallaxes) and the possible presence of undetected binaries in the sample of bona fide single stars are examined, and appropriate corrections are estimated. They are found to be small for our sample. The new data allow us to reliably define the absolute location of the main sequence (MS) as a function of metallicity. These results are then used to derive distances and ages for a carefully selected sample of nine globular clusters having metallicities determined from high-dispersion spectra of individual giants according to a procedure totally consistent with that used for the field subdwarfs. Very precise and homogeneous reddening values have also been independently determined for these clusters. Random errors for our distance moduli are ±0.08 mag, and systematic errors are likely of the same order of magnitude. These very accurate distances allow us to derive ages with internal errors of ~12% (±1.5 Gyr). The main results are: 1. HIPPARCOS parallaxes are smaller than corresponding ground-based measurements, leading, in turn, to longer distance moduli (~0.2 mag) and younger ages (~2.8 Gyr). 2. The distance to NGC 6752 derived from our MS fitting is consistent with that determined using the white dwarf cooling sequence. 3. The relation between the zero-age HB (ZAHB) absolute magnitude and metallicity for the nine program clusters is This relation is fairly consistent with some of the most recent theoretical models. Within quoted errors, the slope is in agreement with that given by the Baade-Wesselink (BW) analysis of RR Lyrae stars by Fernley and Clementini et al., while it is somewhat shallower than the relation given by Sandage. The zero-point is 0.2 to 0.3 mag brighter than that obtained with BW, while it agrees fairly well with that given by Sandage. A comparison with alternative relationships is briefly discussed. 4. The corresponding LMC distance modulus is (m - M)0 = 18.60 ± 0.07, in good agreement with the recent values of 18.70 ± 0.10 and 18.54 ± 0.2 derived by Feast & Catchpole and van Leeuwen et al., respectively, from HIPPARCOS parallaxes of Galactic Cepheid and Mira variables. 5. The age of the bona fide old globular clusters (Oosterhoff II and BHB), based on the absolute magnitude of the turnoff (a theoretically robust indicator) is where the error bar is the 95% confidence range. The rms scatter of individual ages around the mean value is ~10%, in agreement with expectations from observational errors alone (that is, we do not find it necessary to introduce a real age scatter among these clusters). A reliable study of the relative ages requires the use of age indicators better suited to this purpose and data for a larger sample of GGCs. 6. Allowing for a minimum delay of 0.5 Gyr from the birth of the universe until the formation of globular clusters, our age estimate is compatible with an Einstein-de Sitter model if H0 ≤ 64 km s-1 Mpc-1, or H0 ≤ 83 km s-1 Mpc-1 in a flat universe with Ωm = 0.2. Since these upper limits are well within the confidence range of most determinations of H0, we conclude that the present age of globular clusters does not conflict with standard inflationary models of the universe.
Astronomy and Astrophysics | 2003
R. Gratton; A. Bragaglia; Eugenio Carretta; G. Clementini; S. Desidera; F. Grundahl; Sara Lucatello
New improved distances and absolute ages for the Galactic globular clusters NGC 6397, NGC 6752, and 47 Tuc are obtained using the Main Sequence Fitting Method. We derived accurate estimates of reddening and metal abundance for these three clusters using a strictly dierential procedure, where the Johnson B V and Stromgren b y colours and UVES high resolution spectra of turn-o stars and early subgiants belonging to the clusters were compared to similar data for field subdwarfs with accurate parallaxes measured by Hipparcos. The use of a reddening free temperature indicator (the profile of H) allowed us to reduce the error bars in reddening determinations to about 0.005 mag, and in metal abundances to 0.04 dex, in the scales defined by the local subdwarfs. Error bars in distances are then reduced to about 0.07 mag for each cluster, yielding ages with typical random errors of about 1 Gyr. We find that NGC 6397 and NGC 6752 have ages of 13:9 1:1 and 13:8 1: 1G yr respectively, when standard isochrones without microscopic diusion are used, while 47 Tuc is probably about 2.6 Gyr younger, in agreement with results obtained by other techniques sensitive to relative ages. If we use models that include the eects of sedimentation due to microscopic diusion in agreement with our observations of NGC 6397, and take into account various sources of possible systematic errors with a statistical approach, we conclude that the age of the oldest globular clusters in the Galaxy is 13:4 0:8 0:6 Gyr, where the first error bar accounts for random eects, and the second one for systematic errors. This age estimate is fully compatible with the very recent results from WMAP, and indicates that the oldest Galactic globular clusters formed within the first 1.7 Gyr after the Big Bang, corresponding to a redshift of z 2:5, in a standardCDM model. The epoch of formation of the (inner halo) globular clusters lasted about 2.6 Gyr, ending at a time corresponding to a redshift of z 1:3. On the other hand, our new age estimate once combined with values of H0 given by WMAP and by the HST Key Project, provides a robust upper limit at 95% level of confidence of M < 0:57, independently of type Ia SNe, and strongly supports the need for a dark energy. The new cluster distances lead to new estimates of the horizontal branch luminosity, that may be used to derive the zero point of the relation between the horizontal branch absolute magnitude and metallicity: we obtain MV (HB)= (0:22 0:05)((Fe=H)+ 1:5)+ (0:56 0:07). This zero point is 0.03 mag shorter than obtained by Carretta et al. (2000) and within the error bar it agrees with, but it is more precise than most of the previous individual determinations of the RR Lyrae absolute magnitude. When combined with the apparent average luminosity of the RR Lyrae stars in the LMC by Clementini et al. (2003), this zero point provides a new estimate of the distance modulus to the LMC: (m M)0= 18:50 0:09.
The Astrophysical Journal | 2005
Sara Lucatello; Stelios Tsangarides; Timothy C. Beers; Eugenio Carretta; R. Gratton; Sean G. Ryan
Original article can be found at: --http://www.journals.uchicago.edu/--Copyright The American Astronomical Society