Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eugenio Fava is active.

Publication


Featured researches published by Eugenio Fava.


Nature | 2005

Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis.

Lucas Pelkmans; Eugenio Fava; Hannes Grabner; Michael Hannus; Bianca Habermann; Eberhard Krausz; Marino Zerial

Endocytosis is a key cellular process, encompassing different entry routes and endocytic compartments. To what extent endocytosis is subjected to high-order regulation by the cellular signalling machinery remains unclear. Using high-throughput RNA interference and automated image analysis, we explored the function of human kinases in two principal types of endocytosis: clathrin- and caveolae/raft-mediated endocytosis. We monitored this through infection of vesicular stomatitis virus, simian virus 40 and transferrin trafficking, and also through cell proliferation and apoptosis assays. Here we show that a high number of kinases are involved in endocytosis, and that each endocytic route is regulated by a specific kinase subset. Notably, one group of kinases exerted opposite effects on the two endocytic routes, suggesting coordinate regulation. Our analysis demonstrates that signalling functions such as those controlling cell adhesion, growth and proliferation, are built into the machinery of endocytosis to a much higher degree than previously recognized.


Nature Biotechnology | 2013

Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape

Jerome Gilleron; William Querbes; Anja Zeigerer; Anna Borodovsky; Giovanni Marsico; Undine Schubert; Kevin Manygoats; Sarah Seifert; Cordula Andree; Martin Stöter; Hila Epstein-Barash; Ligang Zhang; Victor Koteliansky; Kevin Fitzgerald; Eugenio Fava; Marc Bickle; Yannis Kalaidzidis; Akin Akinc; Martin Maier; Marino Zerial

Delivery of short interfering RNAs (siRNAs) remains a key challenge in the development of RNA interference (RNAi) therapeutics. A better understanding of the mechanisms of siRNA cellular uptake, intracellular transport and endosomal release could critically contribute to the improvement of delivery methods. Here we monitored the uptake of lipid nanoparticles (LNPs) loaded with traceable siRNAs in different cell types in vitro and in mouse liver by quantitative fluorescence imaging and electron microscopy. We found that LNPs enter cells by both constitutive and inducible pathways in a cell type-specific manner using clathrin-mediated endocytosis as well as macropinocytosis. By directly detecting colloidal-gold particles conjugated to siRNAs, we estimated that escape of siRNAs from endosomes into the cytosol occurs at low efficiency (1–2%) and only during a limited window of time when the LNPs reside in a specific compartment sharing early and late endosomal characteristics. Our results provide insights into LNP-mediated siRNA delivery that can guide development of the next generation of delivery systems for RNAi therapeutics.


Molecular Therapy | 2010

Targeted Delivery of RNAi Therapeutics With Endogenous and Exogenous Ligand-Based Mechanisms

Akin Akinc; William Querbes; Soma De; June Qin; Maria Frank-Kamenetsky; K. Narayanannair Jayaprakash; Muthusamy Jayaraman; Kallanthottathil G. Rajeev; William Cantley; J. Robert Dorkin; James Butler; Liuliang Qin; Timothy Racie; Andrew Sprague; Eugenio Fava; Anja Zeigerer; Michael J. Hope; Marino Zerial; Dinah Sah; Kevin Fitzgerald; Mark Tracy; Muthiah Manoharan; Victor Koteliansky; Antonin de Fougerolles; Martin Maier

Lipid nanoparticles (LNPs) have proven to be highly efficient carriers of short-interfering RNAs (siRNAs) to hepatocytes in vivo; however, the precise mechanism by which this efficient delivery occurs has yet to be elucidated. We found that apolipoprotein E (apoE), which plays a major role in the clearance and hepatocellular uptake of physiological lipoproteins, also acts as an endogenous targeting ligand for ionizable LNPs (iLNPs), but not cationic LNPs (cLNPs). The role of apoE was investigated using both in vitro studies employing recombinant apoE and in vivo studies in wild-type and apoE-/- mice. Receptor dependence was explored in vitro and in vivo using low-density lipoprotein receptor (LDLR-/-)-deficient mice. As an alternative to endogenous apoE-based targeting, we developed a targeting approach using an exogenous ligand containing a multivalent N-acetylgalactosamine (GalNAc)-cluster, which binds with high affinity to the asialoglycoprotein receptor (ASGPR) expressed on hepatocytes. Both apoE-based endogenous and GalNAc-based exogenous targeting appear to be highly effective strategies for the delivery of iLNPs to liver.Lipid nanoparticles (LNPs) have proven to be highly efficient carriers of short-interfering RNAs (siRNAs) to hepatocytes in vivo; however, the precise mechanism by which this efficient delivery occurs has yet to be elucidated. We found that apolipoprotein E (apoE), which plays a major role in the clearance and hepatocellular uptake of physiological lipoproteins, also acts as an endogenous targeting ligand for ionizable LNPs (iLNPs), but not cationic LNPs (cLNPs). The role of apoE was investigated using both in vitro studies employing recombinant apoE and in vivo studies in wild-type and apoE(-/-) mice. Receptor dependence was explored in vitro and in vivo using low-density lipoprotein receptor (LDLR(-/-))-deficient mice. As an alternative to endogenous apoE-based targeting, we developed a targeting approach using an exogenous ligand containing a multivalent N-acetylgalactosamine (GalNAc)-cluster, which binds with high affinity to the asialoglycoprotein receptor (ASGPR) expressed on hepatocytes. Both apoE-based endogenous and GalNAc-based exogenous targeting appear to be highly effective strategies for the delivery of iLNPs to liver.


Nature | 2010

Systems survey of endocytosis by multiparametric image analysis

Claudio Collinet; Martin Stöter; Charles R. Bradshaw; Nikolay Samusik; Jochen C. Rink; Denise Kenski; Bianca Habermann; Frank Buchholz; Robert Henschel; Matthias S. Mueller; Wolfgang E. Nagel; Eugenio Fava; Yannis Kalaidzidis; Marino Zerial

Endocytosis is a complex process fulfilling many cellular and developmental functions. Understanding how it is regulated and integrated with other cellular processes requires a comprehensive analysis of its molecular constituents and general design principles. Here, we developed a new strategy to phenotypically profile the human genome with respect to transferrin (TF) and epidermal growth factor (EGF) endocytosis by combining RNA interference, automated high-resolution confocal microscopy, quantitative multiparametric image analysis and high-performance computing. We identified several novel components of endocytic trafficking, including genes implicated in human diseases. We found that signalling pathways such as Wnt, integrin/cell adhesion, transforming growth factor (TGF)-β and Notch regulate the endocytic system, and identified new genes involved in cargo sorting to a subset of signalling endosomes. A systems analysis by Bayesian networks further showed that the number, size, concentration of cargo and intracellular position of endosomes are not determined randomly but are subject to specific regulation, thus uncovering novel properties of the endocytic system.


Nucleic Acids Research | 2009

A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity

Jesper B. Bramsen; Maria B. Laursen; Anne F. Nielsen; Thomas B. Hansen; Claus Bus; Niels Langkjær; B. Ravindra Babu; Torben Højland; Mikhail Abramov; Arthur Van Aerschot; Dalibor Odadzic; Romualdas Smicius; Jens Haas; Cordula Andree; J. M. Barman; Malgorzata Wenska; Puneet Srivastava; Chuanzheng Zhou; Dmytro Honcharenko; Simone Hess; Elke Müller; Georgii V. Bobkov; Sergey N. Mikhailov; Eugenio Fava; Thomas F. Meyer; Jyoti Chattopadhyaya; Marino Zerial; Joachim W. Engels; Piet Herdewijn; Jesper Wengel

The use of chemically synthesized short interfering RNAs (siRNAs) is currently the method of choice to manipulate gene expression in mammalian cell culture, yet improvements of siRNA design is expectably required for successful application in vivo. Several studies have aimed at improving siRNA performance through the introduction of chemical modifications but a direct comparison of these results is difficult. We have directly compared the effect of 21 types of chemical modifications on siRNA activity and toxicity in a total of 2160 siRNA duplexes. We demonstrate that siRNA activity is primarily enhanced by favouring the incorporation of the intended antisense strand during RNA-induced silencing complex (RISC) loading by modulation of siRNA thermodynamic asymmetry and engineering of siRNA 3′-overhangs. Collectively, our results provide unique insights into the tolerance for chemical modifications and provide a simple guide to successful chemical modification of siRNAs with improved activity, stability and low toxicity.


Journal of Cell Biology | 2010

MAPK signaling to the early secretory pathway revealed by kinase/phosphatase functional screening

Hesso Farhan; Markus W. Wendeler; Sandra Mitrovic; Eugenio Fava; Yael Silberberg; Roded Sharan; Marino Zerial; Hans-Peter Hauri

An RNAi screen determines that the early secretory pathway is subject to phosphoregulation via a variety of signaling pathways, including a link between growth factor signaling and ER export.


Journal of Cell Biology | 2005

Botulinum neurotoxin C initiates two different programs for neurite degeneration and neuronal apoptosis

Laura Berliocchi; Eugenio Fava; Marcel Leist; Volker Horvat; David Dinsdale; David J. Read; Pierluigi Nicotera

Clostridial neurotoxins are bacterial endopeptidases that cleave the major SNARE proteins in peripheral motorneurons. Here, we show that disruption of synaptic architecture by botulinum neurotoxin C1 (BoNT/C) in central nervous system neurons activates distinct neurodegenerative programs in the axo-dendritic network and in the cell bodies. Neurites degenerate at an early stage by an active caspase-independent fragmentation characterized by segregation of energy competent mitochondria. Later, the cell body mitochondria release cytochrome c, which is followed by caspase activation, apoptotic nuclear condensation, loss of membrane potential, and, finally, cell swelling and lysis. Recognition and scavenging of dying processes by glia also precede the removal of apoptotic cell bodies, in line with a temporal and spatial segregation of different degenerative processes. Our results suggest that, in response to widespread synaptic damage, neurons first dismantle their connections and finally undergo apoptosis, when their spatial relationships are lost.


Chemistry & Biology | 2007

Natural Product-Derived Modulators of Cell Cycle Progression and Viral Entry by Enantioselective Oxa Diels-Alder Reactions on the Solid Phase

Torben Leßmann; Michele G. Leuenberger; Sascha Menninger; Meritxell Lopez-Canet; Oliver Müller; Stefan Hümmer; Jenny Bormann; Kerstin Korn; Eugenio Fava; Marino Zerial; Thomas U. Mayer; Herbert Waldmann


Diabetologia | 2012

Novel standards in the measurement of rat insulin granules combining electron microscopy, high-content image analysis and in silico modelling

Eugenio Fava; Jaber Dehghany; Joke Ouwendijk; Andreas Müller; Antje Niederlein; Paul Verkade; Michael Meyer-Hermann; Michele Solimena


Journal of Lipid Research | 2008

siRNA screening reveals JNK2 as an evolutionary conserved regulator of triglyceride homeostasis

Vinciane Grimard; Julia Massier; Doris Richter; Dominik Schwudke; Yannis Kalaidzidis; Eugenio Fava; Albin Hermetter; Christoph Thiele

Collaboration


Dive into the Eugenio Fava's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles R. Bradshaw

Wellcome Trust/Cancer Research UK Gurdon Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge