Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yannis Kalaidzidis is active.

Publication


Featured researches published by Yannis Kalaidzidis.


Cell | 2005

Rab Conversion as a Mechanism of Progression from Early to Late Endosomes

Jochen C. Rink; Eric Ghigo; Yannis Kalaidzidis; Marino Zerial

The mechanisms of endosome biogenesis and maintenance are largely unknown. The small GTPases Rab 5 and Rab 7 are key determinants of early and late endosomes, organizing effector proteins into specific membrane subdomains. Whether such Rab machineries are indefinitely maintained on membranes or can disassemble in the course of cargo transport is an open question. Here, we combined novel image-analysis algorithms with fast live-cell imaging. We found that the level of Rab 5 dynamically fluctuates on individual early endosomes, linked by fusion and fission events into a network in time. Within it, degradative cargo concentrates in progressively fewer and larger endosomes that migrate from the cell periphery to the center where Rab 5 is rapidly replaced with Rab 7. The class C VPS/HOPS complex, an established GEF for Rab 7, interacts with Rab 5 and is required for Rab 5-to-Rab 7 conversion. Our results reveal unexpected dynamics of Rab domains and suggest Rab conversion as the mechanism of cargo progression between early and late endosomes.


Nature Biotechnology | 2013

Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape

Jerome Gilleron; William Querbes; Anja Zeigerer; Anna Borodovsky; Giovanni Marsico; Undine Schubert; Kevin Manygoats; Sarah Seifert; Cordula Andree; Martin Stöter; Hila Epstein-Barash; Ligang Zhang; Victor Koteliansky; Kevin Fitzgerald; Eugenio Fava; Marc Bickle; Yannis Kalaidzidis; Akin Akinc; Martin Maier; Marino Zerial

Delivery of short interfering RNAs (siRNAs) remains a key challenge in the development of RNA interference (RNAi) therapeutics. A better understanding of the mechanisms of siRNA cellular uptake, intracellular transport and endosomal release could critically contribute to the improvement of delivery methods. Here we monitored the uptake of lipid nanoparticles (LNPs) loaded with traceable siRNAs in different cell types in vitro and in mouse liver by quantitative fluorescence imaging and electron microscopy. We found that LNPs enter cells by both constitutive and inducible pathways in a cell type-specific manner using clathrin-mediated endocytosis as well as macropinocytosis. By directly detecting colloidal-gold particles conjugated to siRNAs, we estimated that escape of siRNAs from endosomes into the cytosol occurs at low efficiency (1–2%) and only during a limited window of time when the LNPs reside in a specific compartment sharing early and late endosomal characteristics. Our results provide insights into LNP-mediated siRNA delivery that can guide development of the next generation of delivery systems for RNAi therapeutics.


Nature | 2006

The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends

Jonne Helenius; Gary J. Brouhard; Yannis Kalaidzidis; Stefan Diez; Jonathon Howard

The microtubule cytoskeleton is a dynamic structure in which the lengths of the microtubules are tightly regulated. One regulatory mechanism is the depolymerization of microtubules by motor proteins in the kinesin-13 family. These proteins are crucial for the control of microtubule length in cell division, neuronal development and interphase microtubule dynamics. The mechanism by which kinesin-13 proteins depolymerize microtubules is poorly understood. A central question is how these proteins target to microtubule ends at rates exceeding those of standard enzyme–substrate kinetics. To address this question we developed a single-molecule microscopy assay for MCAK, the founding member of the kinesin-13 family. Here we show that MCAK moves along the microtubule lattice in a one-dimensional (1D) random walk. MCAK–microtubule interactions were transient: the average MCAK molecule diffused for 0.83 s with a diffusion coefficient of 0.38 µm2 s-1. Although the catalytic depolymerization by MCAK requires the hydrolysis of ATP, we found that the diffusion did not. The transient transition from three-dimensional diffusion to 1D diffusion corresponds to a “reduction in dimensionality” that has been proposed as the search strategy by which DNA enzymes find specific binding sites. We show that MCAK uses this strategy to target to both microtubule ends more rapidly than direct binding from solution.


Nature Methods | 2014

Objective comparison of particle tracking methods

Nicolas Chenouard; Ihor Smal; Fabrice de Chaumont; Martin Maška; Ivo F. Sbalzarini; Yuanhao Gong; Janick Cardinale; Craig Carthel; Stefano Coraluppi; Mark R. Winter; Andrew R. Cohen; William J. Godinez; Karl Rohr; Yannis Kalaidzidis; Liang Liang; James Duncan; Hongying Shen; Yingke Xu; Klas E. G. Magnusson; Joakim Jaldén; Helen M. Blau; Perrine Paul-Gilloteaux; Philippe Roudot; Charles Kervrann; François Waharte; Jean-Yves Tinevez; Spencer Shorte; Joost Willemse; Katherine Celler; Gilles P. van Wezel

Particle tracking is of key importance for quantitative analysis of intracellular dynamic processes from time-lapse microscopy image data. Because manually detecting and following large numbers of individual particles is not feasible, automated computational methods have been developed for these tasks by many groups. Aiming to perform an objective comparison of methods, we gathered the community and organized an open competition in which participating teams applied their own methods independently to a commonly defined data set including diverse scenarios. Performance was assessed using commonly defined measures. Although no single method performed best across all scenarios, the results revealed clear differences between the various approaches, leading to notable practical conclusions for users and developers.


Nature | 2010

Systems survey of endocytosis by multiparametric image analysis

Claudio Collinet; Martin Stöter; Charles R. Bradshaw; Nikolay Samusik; Jochen C. Rink; Denise Kenski; Bianca Habermann; Frank Buchholz; Robert Henschel; Matthias S. Mueller; Wolfgang E. Nagel; Eugenio Fava; Yannis Kalaidzidis; Marino Zerial

Endocytosis is a complex process fulfilling many cellular and developmental functions. Understanding how it is regulated and integrated with other cellular processes requires a comprehensive analysis of its molecular constituents and general design principles. Here, we developed a new strategy to phenotypically profile the human genome with respect to transferrin (TF) and epidermal growth factor (EGF) endocytosis by combining RNA interference, automated high-resolution confocal microscopy, quantitative multiparametric image analysis and high-performance computing. We identified several novel components of endocytic trafficking, including genes implicated in human diseases. We found that signalling pathways such as Wnt, integrin/cell adhesion, transforming growth factor (TGF)-β and Notch regulate the endocytic system, and identified new genes involved in cargo sorting to a subset of signalling endosomes. A systems analysis by Bayesian networks further showed that the number, size, concentration of cargo and intracellular position of endosomes are not determined randomly but are subject to specific regulation, thus uncovering novel properties of the endocytic system.


Nature Cell Biology | 2003

RhoD regulates endosome dynamics through Diaphanous-related Formin and Src tyrosine kinase

Stéphane Gasman; Yannis Kalaidzidis; Marino Zerial

Early endosomes move bidirectionally between the cell periphery and the interior through a mechanism regulated by the low molecular weight GTPase RhoD. Here, we identify a novel splice variant of human Diaphanous, hDia2C, which specifically binds to RhoD and is recruited onto early endosomes. Expression of RhoD and hDia2C induces a striking alignment of early endosomes along actin filaments and reduces their motility. This activity depends on the membrane recruitment and activation of c-Src kinase, thus uncovering a new role in endosome function. Our results define a novel signal transduction pathway, in which hDia2C and c-Src are sequentially activated by RhoD to regulate the motility of early endosomes through interactions with the actin cytoskeleton.


Nature | 2012

Rab5 is necessary for the biogenesis of the endolysosomal system in vivo

Anja Zeigerer; Jerome Gilleron; Roman L. Bogorad; Giovanni Marsico; Hidenori Nonaka; Sarah Seifert; Hila Epstein-Barash; Satya Kuchimanchi; Chang Geng Peng; Vera M. Ruda; Perla Del Conte-Zerial; Jan G. Hengstler; Yannis Kalaidzidis; Victor Koteliansky; Marino Zerial

An outstanding question is how cells control the number and size of membrane organelles. The small GTPase Rab5 has been proposed to be a master regulator of endosome biogenesis. Here, to test this hypothesis, we developed a mathematical model of endosome dependency on Rab5 and validated it by titrating down all three Rab5 isoforms in adult mouse liver using state-of-the-art RNA interference technology. Unexpectedly, the endocytic system was resilient to depletion of Rab5 and collapsed only when Rab5 decreased to a critical level. Loss of Rab5 below this threshold caused a marked reduction in the number of early endosomes, late endosomes and lysosomes, associated with a block of low-density lipoprotein endocytosis. Loss of endosomes caused failure to deliver apical proteins to the bile canaliculi, suggesting a requirement for polarized cargo sorting. Our results demonstrate for the first time, to our knowledge, the role of Rab5 as an endosome organizer in vivo and reveal the resilience mechanisms of the endocytic system.


Nature | 2009

Reconstitution of Rab- and SNARE-dependent membrane fusion by synthetic endosomes

Takeshi Ohya; Marta Miaczynska; Ünal Coskun; Barbara Lommer; Anja Runge; David Drechsel; Yannis Kalaidzidis; Marino Zerial

Rab GTPases and SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) are evolutionarily conserved essential components of the eukaryotic intracellular transport system. Although pairing of cognate SNAREs is sufficient to fuse membranes in vitro, a complete reconstitution of the Rab–SNARE machinery has never been achieved. Here we report the reconstitution of the early endosomal canine Rab5 GTPase, its key regulators and effectors together with SNAREs into proteoliposomes using a set of 17 recombinant human proteins. These vesicles behave like minimal ‘synthetic’ endosomes, fusing with purified early endosomes or with each other in vitro. Membrane fusion measured by content-mixing and morphological assays requires the cooperativity between Rab5 effectors and cognate SNAREs which, together, form a more efficient ‘core machinery’ than SNAREs alone. In reconstituting a fusion mechanism dependent on both a Rab GTPase and SNAREs, our work shows that the two machineries act coordinately to increase the specificity and efficiency of the membrane tethering and fusion process.


Science Signaling | 2009

Regulation of epidermal growth factor receptor trafficking by lysine deacetylase hdac6

Yonathan Lissanu Deribe; Philipp Wild; Akhila Chandrashaker; Jasna Curak; Mirko H. H. Schmidt; Yannis Kalaidzidis; Natasa Milutinovic; Irina Kratchmarova; Lukas Buerkle; Michael J. Fetchko; Philipp Schmidt; Saranya Kittanakom; Kevin R. Brown; Igor Jurisica; Blagoy Blagoev; Marino Zerial; Igor Stagljar; Ivan Dikic

HDAC6 sets a brake that slows down the delivery of activated epidermal growth factor receptors to the degradative compartment. Setting a Speed Limit on EGFR Traffic Receptor tyrosine kinases interact with ligands at the cell surface to trigger intracellular signaling cascades. In some cases, these receptors are internalized, a process that can either enable them to initiate signaling cascades from intracellular membranes or target them for lysosomal degradation. Lissanu Deribe et al. connect acetylation of the microtubule cytoskeleton to regulation of delivery of epidermal growth factor receptors (EGFRs) to lysosomes. HDAC6, a cytoplasmic lysine deacetylase, was identified as binding to the inactive EGFR, stimulating deacetylation of α-tubulin, and decreasing the rate of delivery of EGFR from the early endosome to late endosomes or lysosomes. Phosphorylation of HDAC6, which decreased its activity, by activated EGFR created a negative feedback loop, leading to increased degradation of activated EGFRs. Binding of epidermal growth factor (EGF) to its receptor leads to receptor dimerization, assembly of protein complexes, and activation of signaling networks that control key cellular responses. Despite their fundamental role in cell biology, little is known about protein complexes associated with the EGF receptor (EGFR) before growth factor stimulation. We used a modified membrane yeast two-hybrid system together with bioinformatics to identify 87 candidate proteins interacting with the ligand-unoccupied EGFR. Among them was histone deacetylase 6 (HDAC6), a cytoplasmic lysine deacetylase, which we found negatively regulated EGFR endocytosis and degradation by controlling the acetylation status of α-tubulin and, subsequently, receptor trafficking along microtubules. A negative feedback loop consisting of EGFR-mediated phosphorylation of HDAC6 Tyr570 resulted in reduced deacetylase activity and increased acetylation of α-tubulin. This study illustrates the complexity of the EGFR-associated interactome and identifies protein acetylation as a previously unknown regulator of receptor endocytosis and degradation.


Molecular Systems Biology | 2008

Membrane identity and GTPase cascades regulated by toggle and cut-out switches

Perla Del Conte-Zerial; Lutz Brusch; Jochen C. Rink; Claudio Collinet; Yannis Kalaidzidis; Marino Zerial; Andreas Deutsch

Key cellular functions and developmental processes rely on cascades of GTPases. GTPases of the Rab family provide a molecular ID code to the generation, maintenance and transport of intracellular compartments. Here, we addressed the molecular design principles of endocytosis by focusing on the conversion of early endosomes into late endosomes, which entails replacement of Rab5 by Rab7. We modelled this process as a cascade of functional modules of interacting Rab GTPases. We demonstrate that intermodule interactions share similarities with the toggle switch described for the cell cycle. However, Rab5‐to‐Rab7 conversion is rather based on a newly characterized ‘cut‐out switch’ analogous to an electrical safety‐breaker. Both designs require cooperativity of auto‐activation loops when coupled to a large pool of cytoplasmic proteins. Live cell imaging and endosome tracking provide experimental support to the cut‐out switch in cargo progression and conversion of endosome identity along the degradative pathway. We propose that, by reconciling module performance with progression of activity, the cut‐out switch design could underlie the integration of modules in regulatory cascades from a broad range of biological processes.

Collaboration


Dive into the Yannis Kalaidzidis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michele Solimena

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Ivanova

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Müller

Dresden University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge