Eula Fung
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eula Fung.
Nature | 2002
Malcolm J. Gardner; Neil Hall; Eula Fung; Owen White; Matthew Berriman; Richard W. Hyman; Jane M. Carlton; Arnab Pain; Karen E. Nelson; Sharen Bowman; Ian T. Paulsen; Keith D. James; Jonathan A. Eisen; Kim Rutherford; Alister Craig; Sue Kyes; Man Suen Chan; Vishvanath Nene; Shamira Shallom; Bernard B. Suh; Jeremy Peterson; Sam Angiuoli; Mihaela Pertea; Jonathan E. Allen; Jeremy D. Selengut; Daniel H. Haft; Michael W. Mather; Akhil B. Vaidya; David M. A. Martin; Alan H. Fairlamb
The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome sequenced to date. Genes involved in antigenic variation are concentrated in the subtelomeric regions of the chromosomes. Compared to the genomes of free-living eukaryotic microbes, the genome of this intracellular parasite encodes fewer enzymes and transporters, but a large proportion of genes are devoted to immune evasion and host–parasite interactions. Many nuclear-encoded proteins are targeted to the apicoplast, an organelle involved in fatty-acid and isoprenoid metabolism. The genome sequence provides the foundation for future studies of this organism, and is being exploited in the search for new drugs and vaccines to fight malaria.
Science | 2008
Maureen E. Hillenmeyer; Eula Fung; Jan Wildenhain; Sarah E. Pierce; Shawn Hoon; William W. Lee; Mark R. Proctor; Robert P. St.Onge; Mike Tyers; Daphne Koller; Russ B. Altman; Ronald W. Davis; Corey Nislow; Guri Giaever
Genetics aims to understand the relation between genotype and phenotype. However, because complete deletion of most yeast genes (∼80%) has no obvious phenotypic consequence in rich medium, it is difficult to study their functions. To uncover phenotypes for this nonessential fraction of the genome, we performed 1144 chemical genomic assays on the yeast whole-genome heterozygous and homozygous deletion collections and quantified the growth fitness of each deletion strain in the presence of chemical or environmental stress conditions. We found that 97% of gene deletions exhibited a measurable growth phenotype, suggesting that nearly all genes are essential for optimal growth in at least one condition.
Nature Genetics | 2007
Robert P. St.Onge; Ramamurthy Mani; Julia Oh; Mark R. Proctor; Eula Fung; Ronald W. Davis; Corey Nislow; Frederick P. Roth; Guri Giaever
Systematic genetic interaction studies have illuminated many cellular processes. Here we quantitatively examine genetic interactions among 26 Saccharomyces cerevisiae genes conferring resistance to the DNA-damaging agent methyl methanesulfonate (MMS), as determined by chemogenomic fitness profiling of pooled deletion strains. We constructed 650 double-deletion strains, corresponding to all pairings of these 26 deletions. The fitness of single- and double-deletion strains were measured in the presence and absence of MMS. Genetic interactions were defined by combining principles from both statistical and classical genetics. The resulting network predicts that the Mph1 helicase has a role in resolving homologous recombination–derived DNA intermediates that is similar to (but distinct from) that of the Sgs1 helicase. Our results emphasize the utility of small molecules and multifactorial deletion mutants in uncovering functional relationships and pathway order.
Nature Chemical Biology | 2008
Shawn Hoon; A. M. Smith; Iain M. Wallace; Sundari Suresh; Molly Miranda; Eula Fung; Mark R. Proctor; Kevan M. Shokat; Chao Zhang; Ronald W. Davis; Guri Giaever; Robert P. St.Onge; Corey Nislow
Bioactive compounds are widely used to modulate protein function and can serve as important leads for drug development. Identifying the in vivo targets of these compounds remains a challenge. Using yeast, we integrated three genome-wide gene-dosage assays to measure the effect of small molecules in vivo. A single TAG microarray was used to resolve the fitness of strains derived from pools of (i) homozygous deletion mutants, (ii) heterozygous deletion mutants and (iii) genomic library transformants. We demonstrated, with eight diverse reference compounds, that integration of these three chemogenomic profiles improves the sensitivity and specificity of small-molecule target identification. We further dissected the mechanism of action of two protein phosphatase inhibitors and in the process developed a framework for the rational design of multidrug combinations to sensitize cells with specific genotypes more effectively. Finally, we applied this platform to 188 novel synthetic chemical compounds and identified both potential targets and structure-activity relationships.
Science | 2014
Anna Y. Lee; Robert P. St.Onge; Michael J. Proctor; Iain M. Wallace; Aaron H. Nile; Paul A. Spagnuolo; Yulia Jitkova; Marcela Gronda; Yan Wu; Moshe K. Kim; Kahlin Cheung-Ong; Nikko P. Torres; Eric D. Spear; Mitchell K.L. Han; Ulrich Schlecht; Sundari Suresh; Geoffrey Duby; Lawrence E. Heisler; Anuradha Surendra; Eula Fung; Malene L. Urbanus; Marinella Gebbia; Elena Lissina; Molly Miranda; Jennifer Chiang; Ana Aparicio; Mahel Zeghouf; Ronald W. Davis; Jacqueline Cherfils; Marc Boutry
Yeasty HIPHOP In order to identify how chemical compounds target genes and affect the physiology of the cell, tests of the perturbations that occur when treated with a range of pharmacological chemicals are required. By examining the haploinsufficiency profiling (HIP) and homozygous profiling (HOP) chemogenomic platforms, Lee et al. (p. 208) analyzed the response of yeast to thousands of different small molecules, with genetic, proteomic, and bioinformatic analyses. Over 300 compounds were identified that targeted 121 genes within 45 cellular response signature networks. These networks were used to extrapolate the likely effects of related chemicals, their impact upon genetic pathways, and to identify putative gene functions. Guilt by association helps identify the chemogenomic signatures of compounds targeting yeast genes. Genome-wide characterization of the in vivo cellular response to perturbation is fundamental to understanding how cells survive stress. Identifying the proteins and pathways perturbed by small molecules affects biology and medicine by revealing the mechanisms of drug action. We used a yeast chemogenomics platform that quantifies the requirement for each gene for resistance to a compound in vivo to profile 3250 small molecules in a systematic and unbiased manner. We identified 317 compounds that specifically perturb the function of 121 genes and characterized the mechanism of specific compounds. Global analysis revealed that the cellular response to small molecules is limited and described by a network of 45 major chemogenomic signatures. Our results provide a resource for the discovery of functional interactions among genes, chemicals, and biological processes.
Reproductive Sciences | 2014
Richard W. Hyman; Marilyn Fukushima; Hui Jiang; Eula Fung; Larry Rand; Brittni Johnson; Kim Chi Vo; Aaron B. Caughey; Joan F. Hilton; Ronald W. Davis; Linda C. Giudice
Reproductive tract infection is a major initiator of preterm birth (PTB). The objective of this prospective cohort study of 88 participants was to determine whether PTB correlates with the vaginal microbiome during pregnancy. Total DNA was purified from posterior vaginal fornix swabs during gestation. The 16S ribosomal RNA gene was amplified using polymerase chain reaction primers, followed by chain-termination sequencing. Bacteria were identified by comparing contig consensus sequences with the Ribosomal Database Project. Dichotomous responses were summarized via proportions and continuous variables via means ± standard deviation. Mean Shannon Diversity index differed by Welch t test (P = .00016) between caucasians with PTB and term gestation. Species diversity was greatest among African Americans (P = .0045). Change in microbiome/Lactobacillus content and presence of putative novel/noxious bacteria did not correlate with PTB. We conclude that uncultured vaginal bacteria play an important role in PTB and race/ethnicity and sampling location are important determinants of the vaginal microbiome.
Nature | 2002
Richard W. Hyman; Eula Fung; Aaron Conway; Omar Kurdi; Jennifer Mao; Molly Miranda; Brian Nakao; Don Rowley; Tomoaki Tamaki; Fawn Wang; Ronald W. Davis
The human malaria parasite Plasmodium falciparum is responsible for the death of more than a million people every year. To stimulate basic research on the disease, and to promote the development of effective drugs and vaccines against the parasite, the complete genome of P. falciparum clone 3D7 has been sequenced, using a chromosome-by-chromosome shotgun strategy. Here we report the nucleotide sequence of the third largest of the parasites 14 chromosomes, chromosome 12, which comprises about 10% of the 23-megabase genome. As the most (A + T)-rich (80.6%) genome sequenced to date, the P. falciparum genome presented severe problems during the assembly of primary sequence reads. We discuss the methodology that yielded a finished and fully contiguous sequence for chromosome 12. The biological implications of the sequence data are more thoroughly discussed in an accompanying Article (ref. 3).
Nucleic Acids Research | 2010
Julia Oh; Eula Fung; Morgan N. Price; Paramvir Dehal; Ronald W. Davis; Guri Giaever; Corey Nislow; Adam P. Arkin; Adam M. Deutschbauer
Systems-level analyses of non-model microorganisms are limited by the existence of numerous uncharacterized genes and a corresponding over-reliance on automated computational annotations. One solution to this challenge is to disrupt gene function using DNA tag technology, which has been highly successful in parallelizing reverse genetics in Saccharomyces cerevisiae and has led to discoveries in gene function, genetic interactions and drug mechanism of action. To extend the yeast DNA tag methodology to a wide variety of microorganisms and applications, we have created a universal, sequence-verified TagModule collection. A hallmark of the 4280 TagModules is that they are cloned into a Gateway entry vector, thus facilitating rapid transfer to any compatible genetic system. Here, we describe the application of the TagModules to rapidly generate tagged mutants by transposon mutagenesis in the metal-reducing bacterium Shewanella oneidensis MR-1 and the pathogenic yeast Candida albicans. Our results demonstrate the optimal hybridization properties of the TagModule collection, the flexibility in applying the strategy to diverse microorganisms and the biological insights that can be gained from fitness profiling tagged mutant collections. The publicly available TagModule collection is a platform-independent resource for the functional genomics of a wide range of microbial systems in the post-genome era.
Circulation Research | 2015
Kitchener D. Wilson; Peidong Shen; Eula Fung; Ioannis Karakikes; Angela Zhang; Kolsoum InanlooRahatloo; Justin I. Odegaard; Karim Sallam; Ronald W. Davis; George K. Lui; Euan A. Ashley; Curt Scharfe; Joseph C. Wu
RATIONALE Thousands of mutations across >50 genes have been implicated in inherited cardiomyopathies. However, options for sequencing this rapidly evolving gene set are limited because many sequencing services and off-the-shelf kits suffer from slow turnaround, inefficient capture of genomic DNA, and high cost. Furthermore, customization of these assays to cover emerging targets that suit individual needs is often expensive and time consuming. OBJECTIVE We sought to develop a custom high throughput, clinical-grade next-generation sequencing assay for detecting cardiac disease gene mutations with improved accuracy, flexibility, turnaround, and cost. METHODS AND RESULTS We used double-stranded probes (complementary long padlock probes), an inexpensive and customizable capture technology, to efficiently capture and amplify the entire coding region and flanking intronic and regulatory sequences of 88 genes and 40 microRNAs associated with inherited cardiomyopathies, congenital heart disease, and cardiac development. Multiplexing 11 samples per sequencing run resulted in a mean base pair coverage of 420, of which 97% had >20× coverage and >99% were concordant with known heterozygous single nucleotide polymorphisms. The assay correctly detected germline variants in 24 individuals and revealed several polymorphic regions in miR-499. Total run time was 3 days at an approximate cost of
The Journal of Molecular Diagnostics | 2016
Martina I. Lefterova; Peidong Shen; Justin I. Odegaard; Eula Fung; Tsoyu Chiang; Gang Peng; Ronald W. Davis; Wenyi Wang; Martin Kharrazi; Iris Schrijver; Curt Scharfe
100 per sample. CONCLUSIONS Accurate, high-throughput detection of mutations across numerous cardiac genes is achievable with complementary long padlock probe technology. Moreover, this format allows facile insertion of additional probes as more cardiomyopathy and congenital heart disease genes are discovered, giving researchers a powerful new tool for DNA mutation detection and discovery.