Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eulàlia Martí is active.

Publication


Featured researches published by Eulàlia Martí.


Journal of Neuropathology and Experimental Neurology | 1999

BDNF and full-length and truncated TrkB expression in Alzheimer disease. Implications in therapeutic strategies.

Isidro Ferrer; Conxita Marín; M.J. Rey; Teresa Ribalta; E Goutan; Rosa Blanco; E. Tolosa; Eulàlia Martí

Brain-derived neurotrophic factor (BDNF), and full-length and truncated tyrosin kinase B receptor (TrkB) protein expression were examined by Western blotting and immunohistochemistry in the frontal cortex and hippocampus of individuals affected by long-lasting severe Alzheimer disease (AD) and age-matched controls. Since preliminary processing studies in the brains of rats have shown loss of immunoreactivity depending on the postmortem delay in tissue processing and on the type, duration, and temperature of the fixative solution, only human samples obtained up to 6 hours (h) after death for biochemical and morphological studies and fixed by immersion in 4% paraformaldehyde for 24 h for morphological studies were included in the present series. Decreased BDNF and full-length TrkB expression accompanied by increased truncated TrkB expression, as revealed by Western blotting, was observed in the frontal cortex of patients with AD. Immunohistochemistry disclosed reduced BDNF and full-length TrkB immunoreactivity in neurons. BDNF decrease was equally observed in tangle-bearing and non-tangle-bearing neurons, as revealed with double-labeling immunohistochemistry to BDNF and phosphorylated tau or phosphorylated neurofilament epitopes. Full-length TrkB immunoreactivity was largely decreased in tangle-bearing neurons, whereas only moderate decreases occurred in neurons with granulovacuolar degeneration. Strong BDNF immunoreactivity was observed in dystrophic neurites surrounding senile plaques, whereas strong TrkB expression occurred in reactive glial cells, including those surrounding senile plaques. Finally, truncated TrkB immunoreactivity was observed in individual neurons and in reactive glial cells in the cerebral cortex and white matter in AD. These results show decay in the expression of BDNF and TrkB in AD neurons, accompanied by altered BDNF, and full-length and truncated TrkB expression in dystrophic neurites and reactive glial cells, respectively, in this disease. The present results demonstrate selective decline of the BDNF/TrkB neurotrophic signaling pathway in the frontal cortex and hippocampus in AD and provide supplemental data that may be relevant in discussing the suitability of the use of BDNF as a therapeutic agent in patients with AD.


Human Molecular Genetics | 2011

MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function

Elena Miñones-Moyano; Sílvia Porta; Geòrgia Escaramís; Raquel Rabionet; Susana Iraola; Birgit Kagerbauer; Yolanda Espinosa-Parrilla; Isidre Ferrer; Xavier Estivill; Eulàlia Martí

MicroRNAs (miRNAs) are post-transcriptional gene expression regulators, playing key roles in neuronal development, plasticity and disease. Parkinsons disease (PD) is the second most common neurodegenerative disorder, characterized by the presence of protein inclusions or Lewy bodies and a progressive loss of dopaminergic neurons in the midbrain. Here, we have evaluated miRNA expression deregulation in PD brain samples. MiRNA expression profiling revealed decreased expression of miR-34b and miR-34c in brain areas with variable neuropathological affectation at clinical (motor) stages (Braak stages 4 and 5) of the disease, including the amygdala, frontal cortex, substantia nigra and cerebellum. Furthermore, misregulation of miR-34b/c was detected in pre-motor stages (stages 1-3) of the disease, and thus in cases that did not receive any PD-related treatment during life. Depletion of miR-34b or miR-34c in differentiated SH-SY5Y dopaminergic neuronal cells resulted in a moderate reduction in cell viability that was accompanied by altered mitochondrial function and dynamics, oxidative stress and reduction in total cellular adenosin triphosphate content. MiR-34b/c downregulation was coupled to a decrease in the expression of DJ1 and Parkin, two proteins associated to familial forms of PD that also have a role in idiopathic cases. Accordingly, DJ1 and Parkin expression was reduced in PD brain samples displaying strong miR-34b/c downregulation. We propose that early deregulation of miR-34b/c in PD triggers downstream transcriptome alterations underlying mitochondrial dysfunction and oxidative stress, which ultimately compromise cell viability. A better understanding of the cellular pathways controlling and/or controlled by miR-34b/c should allow identification of targets for development of therapeutic approaches.


Molecular and Cellular Biology | 2002

Dyrk1A Haploinsufficiency Affects Viability and Causes Developmental Delay and Abnormal Brain Morphology in Mice

Vassiliki Fotaki; Mara Dierssen; Soledad Alcántara; Salvador Martínez; Eulàlia Martí; Caty Casas; Joana Visa; Eduardo Soriano; Xavier Estivill; Maria L. Arbonés

ABSTRACT DYRK1A is the human orthologue of the Drosophila minibrain (mnb) gene, which is involved in postembryonic neurogenesis in flies. Because of its mapping position on chromosome 21 and the neurobehavioral alterations shown by mice overexpressing this gene, involvement of DYRK1A in some of the neurological defects of Down syndrome patients has been suggested. To gain insight into its physiological role, we have generated mice deficient in Dyrk1A function by gene targeting. Dyrk1A−/− null mutants presented a general growth delay and died during midgestation. Mice heterozygous for the mutation (Dyrk1A+/−) showed decreased neonatal viability and a significant body size reduction from birth to adulthood. General neurobehavioral analysis revealed preweaning developmental delay of Dyrk1A+/− mice and specific alterations in adults. Brains of Dyrk1A+/− mice were decreased in size in a region-specific manner, although the cytoarchitecture and neuronal components in most areas were not altered. Cell counts showed increased neuronal densities in some brain regions and a specific decrease in the number of neurons in the superior colliculus, which exhibited a significant size reduction. These data provide evidence about the nonredundant, vital role of Dyrk1A and suggest a conserved mode of action that determines normal growth and brain size in both mice and flies.


Nucleic Acids Research | 2010

A myriad of miRNA variants in control and Huntington’s disease brain regions detected by massively parallel sequencing

Eulàlia Martí; Lorena Pantano; Mónica Bañez-Coronel; Franc Llorens; Elena Miñones-Moyano; Sílvia Porta; Lauro Sumoy; Isidre Ferrer; Xavier Estivill

Huntington disease (HD) is a neurodegenerative disorder that predominantly affects neurons of the forebrain. We have applied the Illumina massively parallel sequencing to deeply analyze the small RNA populations of two different forebrain areas, the frontal cortex (FC) and the striatum (ST) of healthy individuals and individuals with HD. More than 80% of the small-RNAs were annotated as microRNAs (miRNAs) in all samples. Deep sequencing revealed length and sequence heterogeneity (IsomiRs) for the vast majority of miRNAs. Around 80–90% of the miRNAs presented modifications in the 3′-terminus mainly in the form of trimming and/or as nucleotide addition variants, while the 5′-terminus of the miRNAs was specially protected from changes. Expression profiling showed strong miRNA and isomiR expression deregulation in HD, most being common to both FC and ST. The analysis of the upstream regulatory regions in co-regulated miRNAs suggests a role for RE1-Silencing Transcription Factor (REST) and P53 in miRNAs downregulation in HD. The putative targets of deregulated miRNAs and seed-region IsomiRs strongly suggest that their altered expression contributes to the aberrant gene expression in HD. Our results show that miRNA variability is a ubiquitous phenomenon in the adult human brain, which may influence gene expression in physiological and pathological conditions.


Genome Biology | 2014

Evidence for the biogenesis of more than 1,000 novel human microRNAs

Marc R. Friedländer; Esther Lizano; Anna Js Houben; Daniela Bezdan; Mónica Bañez-Coronel; Grzegorz Kudla; Elisabet Mateu-Huertas; Birgit Kagerbauer; Justo González; Kevin C.W. Chen; Emily LeProust; Eulàlia Martí; Xavier Estivill

BackgroundMicroRNAs (miRNAs) are established regulators of development, cell identity and disease. Although nearly two thousand human miRNA genes are known and new ones are continuously discovered, no attempt has been made to gauge the total miRNA content of the human genome.ResultsEmploying an innovative computational method on massively pooled small RNA sequencing data, we report 2,469 novel human miRNA candidates of which 1,098 are validated by in-house and published experiments. Almost 300 candidates are robustly expressed in a neuronal cell system and are regulated during differentiation or when biogenesis factors Dicer, Drosha, DGCR8 or Ago2 are silenced. To improve expression profiling, we devised a quantitative miRNA capture system. In a kidney cell system, 400 candidates interact with DGCR8 at transcript positions that suggest miRNA hairpin recognition, and 1,000 of the new miRNA candidates interact with Ago1 or Ago2, indicating that they are directly bound by miRNA effector proteins. From kidney cell CLASH experiments, in which miRNA-target pairs are ligated and sequenced, we observe hundreds of interactions between novel miRNAs and mRNA targets. The novel miRNA candidates are specifically but lowly expressed, raising the possibility that not all may be functional. Interestingly, the majority are evolutionarily young and overrepresented in the human brain.ConclusionsIn summary, we present evidence that the complement of human miRNA genes is substantially larger than anticipated, and that more are likely to be discovered in the future as more tissues and experimental conditions are sequenced to greater depth.


Neurobiology of Disease | 2005

Constitutive Dyrk1A is abnormally expressed in Alzheimer disease, Down syndrome, Pick disease, and related transgenic models

Isidro Ferrer; Marta Barrachina; B. Puig; M. Martínez de Lagrán; Eulàlia Martí; Jesús Avila; Mara Dierssen

DYRK1A, dual-specificity tyrosine-regulated kinase 1A, maps to human chromosome 21 within the Down syndrome (DS) critical region. Dyrk1 phosphorylates the human microtubule-associated protein tau at Thr212 in vitro, a residue that is phosphorylated in fetal tau and hyper-phosphorylated in Alzheimer disease (AD) and tauopathies, including Pick disease (PiD). Furthermore, phosphorylation of Thr212 primes tau for phosphorylation by glycogen synthase kinase 3 (GSK-3). The present study examines Dyrk1A in the cerebral cortex of sporadic AD, adult DS with associated AD, and PiD. Increased Dyrk1A immunoreactivity has been found in the cytoplasm and nuclei of scattered neurons of the neocortex, entorhinal cortex, and hippocampus in AD, DS, and PiD. Dyrk1A is found in sarkosyl-insoluble fractions which are enriched in phosphorylated tau in AD brains, thus suggesting a possible association of Dyrk1A with neurofibrillary tangle pathology. Yet, no clear relationship has been observed between tau phosphorylation at Thr212, and GSK-3 and Dyrk1A expression in diseased brains. Transgenic mice bearing a triple tau mutation (G272V, P301L, and R406W) and expressing hyper-phosphoyrylated tau in neurons of the entorhinal cortex, hippocampus, and cerebral neocortex show increased expression of Dyrk1A in individual neurons in the same regions. However, transgenic mice over-expressing Dyrk1A do not show increased phosphorylation of tau at Thr212, thus suggesting that Dyrk1A over-expression does not trigger per se hyper-phosphorylation of tau at Thr212 in vivo. The present observations indicate modifications in the expression of constitutive Dyrk1A in the cytoplasm and nuclei of neurons in various neurodegenerative diseases associated with tau phosphorylation.


PLOS Genetics | 2012

A pathogenic mechanism in Huntington's disease involves small CAG-repeated RNAs with neurotoxic activity.

Mónica Bañez-Coronel; Sílvia Porta; Birgit Kagerbauer; Elisabet Mateu-Huertas; Lorena Pantano; Isidre Ferrer; Manuel Guzmán; Xavier Estivill; Eulàlia Martí

Huntingtons disease (HD) is an autosomal dominantly inherited disorder caused by the expansion of CAG repeats in the Huntingtin (HTT) gene. The abnormally extended polyglutamine in the HTT protein encoded by the CAG repeats has toxic effects. Here, we provide evidence to support that the mutant HTT CAG repeats interfere with cell viability at the RNA level. In human neuronal cells, expanded HTT exon-1 mRNA with CAG repeat lengths above the threshold for complete penetrance (40 or greater) induced cell death and increased levels of small CAG-repeated RNAs (sCAGs), of ≈21 nucleotides in a Dicer-dependent manner. The severity of the toxic effect of HTT mRNA and sCAG generation correlated with CAG expansion length. Small RNAs obtained from cells expressing mutant HTT and from HD human brains significantly decreased neuronal viability, in an Ago2-dependent mechanism. In both cases, the use of anti-miRs specific for sCAGs efficiently blocked the toxic effect, supporting a key role of sCAGs in HTT-mediated toxicity. Luciferase-reporter assays showed that expanded HTT silences the expression of CTG-containing genes that are down-regulated in HD. These results suggest a possible link between HD and sCAG expression with an aberrant activation of the siRNA/miRNA gene silencing machinery, which may trigger a detrimental response. The identification of the specific cellular processes affected by sCAGs may provide insights into the pathogenic mechanisms underlying HD, offering opportunities to develop new therapeutic approaches.


Nucleic Acids Research | 2010

SeqBuster, a bioinformatic tool for the processing and analysis of small RNAs datasets, reveals ubiquitous miRNA modifications in human embryonic cells

Lorena Pantano; Xavier Estivill; Eulàlia Martí

High-throughput sequencing technologies enable direct approaches to catalog and analyze snapshots of the total small RNA content of living cells. Characterization of high-throughput sequencing data requires bioinformatic tools offering a wide perspective of the small RNA transcriptome. Here we present SeqBuster, a highly versatile and reliable web-based toolkit to process and analyze large-scale small RNA datasets. The high flexibility of this tool is illustrated by the multiple choices offered in the pre-analysis for mapping purposes and in the different analysis modules for data manipulation. To overcome the storage capacity limitations of the web-based tool, SeqBuster offers a stand-alone version that permits the annotation against any custom database. SeqBuster integrates multiple analyses modules in a unique platform and constitutes the first bioinformatic tool offering a deep characterization of miRNA variants (isomiRs). The application of SeqBuster to small-RNA datasets of human embryonic stem cells revealed that most miRNAs present different types of isomiRs, some of them being associated to stem cell differentiation. The exhaustive description of the isomiRs provided by SeqBuster could help to identify miRNA-variants that are relevant in physiological and pathological processes. SeqBuster is available at http://estivill_lab.crg.es/seqbuster.


Brain Research | 2003

Dyrk1A expression pattern supports specific roles of this kinase in the adult central nervous system

Eulàlia Martí; Xavier Altafaj; Mara Dierssen; Susana de la Luna; Vassiliki Fotaki; Mónica Alvarez; Mercè Pérez-Riba; Isidro Ferrer; Xavier Estivill

Dyrk1A and its Drosophila orthologue, the protein minibrain (mnb), belong to a family of serine/threonine kinases involved in the development of the central nervous system (CNS). However, additional roles for Dyrk1A have to be proposed, as its expression is still prominent in the adult brain. To gain insight into Dyrk1A physiological roles we have studied the distribution of this kinase in the CNS of mice in adulthood. A homogeneous diffuse immunostaining of variable intensity was detected throughout the neuropile, with the white matter displaying faint Dyrk1A immunoreactivity. Dyrk1A immunostaining was strong in the olfactory bulb, the cerebellar cortex and functionally related structures, the spinal cord and most of the motor nuclei of the midbrain and brain stem. These data agree with a possible implication of this kinase in the physiology of olfaction and motor functions. Cellular and subcellular localisation of Dyrk1A was also studied in primary cell culture of cerebellum, one of the structures showing significant Dyrk1A immunostaining in the adult. The distribution of Dyrk1A in primary cell culture showed the presence of this protein in the nucleus and the cytoplasm of both neurons and astrocytes. Moreover, studies on the subcellular distribution of Dyrk1A in whole brain homogenates of adult mice showed the presence of this protein both in nuclear and cytoplasm-enriched fractions, thus supporting selective functions of this kinase in these two subcellular compartments. The present results showing the distribution of Dyrk1A in widespread areas of the adult CNS and in different subcellular compartments, together with previous reports demonstrating its implication in developmental events concur with the idea of several spatio-temporal functional profiles.


Brain Pathology | 2006

BDNF Up‐Regulates TrkB Protein and Prevents the Death of CA1 Neurons Following Transient Forebrain Ischemia

Isidre Ferrer; Jordi Ballabriga; Eulàlia Martí; Esther Hormiga Pérez; Jordi Alberch; Ernest Arenas

The neurotrophin family of growth factors, which includes Nerve Growth Factor (NGF), Brain‐Derived Neurotrophic Factor (BDNF), Neurotrophin‐3 (NT3) and Neurotrophin‐4/5 (NT4/5) bind and activate specific tyrosine kinase (Trk) receptors to promote cell survival and growth of different cell populations. For these reasons, growing attention has been paid to the use of neurotrophins as therapeutic agents in neurodegeneration, and to the regulation of the expression of their specific receptors by the ligands. BDNF expression, as revealed by immunohistochemistry, is found in the pre‐subiculum, CA1, CA3, and dentate gyrus of the hippocampus. Strong TrkB immunoreactivity is present in most CA3 neurons but only in scattered neurons of the CA1 area. Weak TrkB immunoreactivity is found in the granule cell layer of the dentate gyrus. Unilateral grafting of BDNF‐transfected fibroblasts into the hippocampus resulted in a marked increase in the intensity of the immunoreaction and in the number of TrkB‐immunoreactive neurons in the granule cell layer of the dentate gyrus, pre‐subiculum and CA1 area in the vicinity of the graft. No similar effects were produced after the injection of control mock‐transfected fibroblasts. Delayed cell death in the CA1 area was produced following 5 min of forebrain ischemia in the gerbil. The majority of living cells in the CA1 area at the fourth day were BDNF/TrkB immunoreactive. Unilateral grafting of control mock‐transfected or BDNF fibroblasts two days before ischemia resulted in a moderate non‐specific protection of TrkB‐negative, but not TrkB‐positive cells, in the CA1 area of the grafted side. This finding is in line with a vascular and glial reaction, as revealed, by immunohistochemistry using astroglial and microglial cell markers. This astroglial response was higher in the grafted side than in the contralateral side in ischemic gerbils, but no differences were seen between BDNF‐producing and non‐BDNF‐producing grafts. However, grafting of BDNF‐producing fibroblasts two days before ischemia significantly and specifically prevented nerve cells from dying in the CA1 area of the ipsilateral hippocampus. Cell survival was associated with increased TrkB immunoreactivity as the majority of living cells were TrkB immunoreactive. Thus, our results show that BDNF is able to up‐regulate the expression of TrkB in control and pathological states, and that BDNF prevention of neuronal death following transient forebrain ischemia is associated with increased expression of its specific receptor.

Collaboration


Dive into the Eulàlia Martí's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Blasi

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Franc Llorens

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge