J. Blasi
University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. Blasi.
Proceedings of the National Academy of Sciences of the United States of America | 2003
David Reigada; Ismael Díez-Pérez; Pau Gorostiza; Albert Verdaguer; Inmaculada Gómez de Aranda; Oriol Pineda; Jaume Vilarrasa; Jordi Marsal; J. Blasi; Jordi Aleu; Carles Solsona
Neurotransmitters are stored in synaptic vesicles, where they have been assumed to be in free solution. Here we report that in Torpedo synaptic vesicles, only 5% of the total acetylcholine (ACh) or ATP content is free, and that the rest is adsorbed to an intravesicular proteoglycan matrix. This matrix, which controls ACh and ATP release by an ion-exchange mechanism, behaves like a smart gel. That is, it releases neurotransmitter and changes its volume when challenged with small ionic concentration change. Immunodetection analysis revealed that the synaptic vesicle proteoglycan SV2 is the core of the intravesicular matrix and is responsible for immobilization and release of ACh and ATP. We suggest that in the early steps of vesicle fusion, this internal matrix regulates the availability of free diffusible ACh and ATP, and thus serves to modulate the quantity of transmitter released.
European Journal of Neuroscience | 1996
B. Ruiz-Montasell; Fernando Aguado; Glòria Majó; E. R. Chapman; Josep M. Canals; Jordi Marsal; J. Blasi
Syntaxin 1 binds to several proteins of the synaptic terminal and is a central component in the pathway of protein–protein interactions that underlies docking and fusion of synaptic vesicles. Molecular studies revealed the occurrence of two isoforms, syntaxin 1A and syntaxin 1B, which coexpress in neural tissues. However, they display differential expression patterns in endocrine cell types. We generated isoform‐specific antibodies that were used in Western blotting and immunocytochemical studies. First, we confirmed the sole presence of syntaxin 1A in endocrine pituitary cells. Second, we found distinctive immunolabelling patterns of each isoform in the rat olfactory system, hippocampus, striatum, thalamus and spinal cord. In addition, the principal white matter commissures displayed distinct immunoreactivity for each isoform. This report shows, for the first time, major differences between the distributions of syntaxin 1A and syntaxin 1B isoforms in the rat central nervous system.
Neuroscience | 1999
Fernando Aguado; G Majó; B Ruiz-Montasell; Jordi Llorens; Jordi Marsal; J. Blasi
Syntaxin 1 has been shown to play an outstanding role in synaptic vesicle exocytosis. Two isoforms of this protein are expressed in neurons, syntaxin 1A and 1B. However, the physiological significance of the occurrence of such closely related isoforms is not still understood. Here, by means of isoform-specific immunocytochemistry, we show that syntaxin 1A and 1B display different patterns of expression in the rat peripheral nervous system. Nerve terminals of sensory neurons reaching the spinal cord were clearly enriched in immunoreactive syntaxin 1A. Both isoforms were detected in cell bodies of sensory neurons at the dorsal root ganglia, although specific immunolabelling displayed very different patterns at the cellular level. Motor endplates and muscle spindles were only immunostained for syntaxin 1B. Syntaxin 1A was mainly associated with nerve fibres reaching small blood vessels. In addition, nerve plexuses of the enteric nervous system showed immunostaining for both syntaxin isoforms. The different distribution pattern of the two neuronal syntaxin isoforms in the rat peripheral nervous system could be related to isoform-specific biochemical properties involved in the exocytotic process.
Journal of Neuropathology and Experimental Neurology | 1998
Isidro Ferrer; Eulàlia Martí; Avelina Tortosa; J. Blasi
Dystrophic neurites are major components of neuritic (both immature and mature) senile plaques in Alzheimer disease. Previous studies have shown strong immunoreactivity for different neuropeptides, and chromogranin A, a protein associated with dense-core vesicles, in dystrophic neurites. In the present study, antibodies to synaptophysin, synapsin, Rab3a and synaptotagmin (synaptic vesicle proteins), and SNAP-25 (synaptosomal-associated protein of 25 kD) and syntaxin (presynaptic plasma membrane proteins) have been used to learn about the dystrophic neurite equipment of proteins that are necessary for the docking and fusion of synaptic vesicles, and then for exocytosis and neurotransmission. The present results have shown that, although most neuritic senile plaques have chromogranin A- and SNAP-25-immunoreactive dystrophic neurites, only a percentage of them contain synaptophysin, and a minority contain synaptotagmin and Rab3a. Dystrophic neurites do not contain synapsin and syntaxin. These results show that dystrophic neurites of senile plaques are defective in proteins that control exocytosis and neurotransmission.
The Journal of Neuroscience | 2011
Tiziana Cotrufo; Francesc Pérez-Brangulí; Ashraf Muhaisen; Oriol Ros; Rosa Andrés; Thomas Baeriswyl; Giulia Fuschini; Teresa Tarragó; Marta Pascual; Jesús M. Ureña; J. Blasi; Ernest Giralt; Esther T. Stoeckli; Eduardo Soriano
Directed cell migration and axonal guidance are essential steps in neural development. Both processes are controlled by specific guidance cues that activate the signaling cascades that ultimately control cytoskeletal dynamics. Another essential step in migration and axonal guidance is the regulation of plasmalemma turnover and exocytosis in leading edges and growth cones. However, the cross talk mechanisms linking guidance receptors and membrane exocytosis are not understood. Netrin-1 is a chemoattractive cue required for the formation of commissural pathways. Here, we show that the Netrin-1 receptor deleted in colorectal cancer (DCC) forms a protein complex with the t-SNARE (target SNARE) protein Syntaxin-1 (Sytx1). This interaction is Netrin-1 dependent both in vitro and in vivo, and requires specific Sytx1 and DCC domains. Blockade of Sytx1 function by using botulinum toxins abolished Netrin-1-dependent chemoattraction of axons in mouse neuronal cultures. Similar loss-of-function experiments in the chicken spinal cord in vivo using dominant-negative Sytx1 constructs or RNAi led to defects in commissural axon pathfinding reminiscent to those described in Netrin-1 and DCC loss-of-function models. We also show that Netrin-1 elicits exocytosis at growth cones in a Sytx1-dependent manner. Moreover, we demonstrate that the Sytx1/DCC complex associates with the v-SNARE (vesicle SNARE) tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP) and that knockdown of TI-VAMP in the commissural pathway in the spinal cord results in aberrant axonal guidance phenotypes. Our data provide evidence of a new signaling mechanism that couples chemotropic Netrin-1/DCC axonal guidance and Sytx1/TI-VAMP SNARE proteins regulating membrane turnover and exocytosis.
Endocrinology | 1997
Lidia Sevilla; Eva Tomas; Purificación Muñoz; Anna Gumà; Yvan Fischer; Julia Thomas; Bonaventura Ruiz-Montasell; Xavier Testar; Manuel Palacín; J. Blasi; Antonio Zorzano
A major objective for the understanding of muscle glucose disposal is the elucidation of the intracellular trafficking pathway of GLUT4 glucose carriers in the muscle fiber. In this report, we provide functional and biochemical characterization of two distinct intracellular GLUT4 vesicle pools obtained from rat skeletal muscle. The two pools showed a differential response to insulin; thus, one showed a marked decrease in GLUT4 levels but the other did not. They also showed a markedly different protein composition as detected by quantitative vesicle immunoisolation analysis. The GLUT4 pool showing no response to insulin contained SCAMP proteins and the vSNARE proteins VAMP2 and cellubrevin, whereas only VAMP2 was found in the insulin-recruitable GLUT4 pool. SDS-PAGE and further silver staining of the immunoprecipitates revealed discrete polypeptide bands associated to the insulin-sensitive pool, and all these polypeptide bands were found in the insulin-insensitive population. Furthermore, some polypeptide ...
Journal of Physiology-paris | 1994
J. Blasi; Thomas Binz; S. Yamasaki; Egenhard Link; Heiner Niemann; Reinhard Jahn
Rat brain synaptosomes were used to study the effect of several clostridial neurotoxins on the neurotransmitter release. In this system the blockade of transmitter release correlated with the proteolytic activity of the toxins. Blockade of glutamate release was linked to selective proteolysis of one of the following synaptic proteins: synaptobrevin (BoNT/D, BoNT/F); SNAP-25 (BoNT/A, BoNT/E), or HPC-1/syntaxin (BoNT/C1). All the toxins used had an inhibitory effect on synaptosomes with the exception of BoNT/F. BoNT/F cleaved synaptobrevin in permeabilized synaptosomes but failed to produce the same effect on intact synaptosomes.
Journal of Cellular Physiology | 2006
Laia Bahima; Jordi Aleu; Marc Elías; Mireia Martín-Satué; Ashraf Muhaisen; J. Blasi; Jordi Marsal; Carles Solsona
ATP is an electrically charged molecule that functions both in the supply of energy necessary for cellular activity and as an intercellular signaling molecule. Although controlled ATP secretion occurs via exocytosis of granules and vesicles, in some cells, and under certain conditions, other mechanisms control ATP release. Gap junctions, intercellular channels formed by connexins that link the cytoplasm of two adjacent cells, control the passage of ions and molecules up to 1 kDa. The channel is formed by two moieties called hemichannels, or connexons, and it has been suggested that these may represent an alternative pathway for ATP release. We have investigated the release of ATP through hemichannels from Xenopus oocytes that are formed by Connexin 38 (Cx38), an endogenous, specific type of connexin. These hemichannels generate an inward current that is reversibly activated by calcium‐free solution and inhibited by octanol and flufenamic acid. This calcium‐sensitive current depends on Cx38 expression: it is decreased in oocytes injected with an antisense oligonucleotide against Cx38 mRNA (ASCx38) and is increased in oocytes overexpressing Cx38. Moreover, the activation of these endogenous connexons also allows transfer of Lucifer Yellow. We have found that the release of ATP is coincident with the opening of hemichannels: it is calcium‐sensitive, is inhibited by octanol and flufenamic acid, is inhibited in ASCx38 injected oocytes, and is increased by overexpression of Cx38. Taken together, our results suggest that ATP is released through activated hemichannels in Xenopus oocytes.
Neurochemistry International | 1987
Jordi Marsal; Carles Solsona; X. Rabasseda; J. Blasi; A. Casanova
We report here the effects of Botulinum Toxin type A on the release of ATP and Acetylcholine from Torpedo electric organ synaptosomes. Our results show that Botulinum Toxin type A inhibits specifically the K(+)-induced release of Acetylcholine from synaptosomes without affecting the release of ATP. Membrane potential and calcium uptake into cholinergic nerve terminals are not modified after Botulinum Toxin poisoning. It is suggested that either most of the ATP released during the depolarization of the cholinergic synaptosomes does not originate from cholinergic synaptic vesicles or that there are two populations of synaptic vesicles, Acetylcholine-enriched synaptic vesicles and ATP-enriched synaptic vesicles. However, the possibility that the ACh and ATP released could come from different intrasynaptosomal compartments cannot be excluded.
Neuroscience | 1999
Jia-Yi Li; Walter Volknandt; Annica Dahlström; Christine Herrmann; J. Blasi; B. Das; Herbert Zimmermann
RNA was previously shown to be transported into both dendritic and axonal compartments of nerve cells, presumably involving a ribonucleoprotein particle. In order to reveal potential mechanisms of transport we investigated the axonal transport of the major vault protein of the electric ray Torpedo marmorata. This protein is the major protein component of a ribonucleoprotein particle (vault) carrying a non-translatable RNA and has a wide distribution in the animal kingdom. It is highly enriched in the cholinergic electromotor neurons and similar in size to synaptic vesicles. The axonal transport of vaults was investigated by immunofluorescence, using the anti-vault protein antibody as marker, and cytofluorimetric scanning, and was compared to that of the synaptic vesicle membrane protein SV2 and of the beta-subunit of the F1-ATPase as a marker for mitochondria. Following a crush significant axonal accumulation of SV2 proximal to the crush could first be observed after 1 h, that of mitochondria after 3 h and that of vaults after 6 h, although weekly fluorescent traces of accumulations of vault protein were observed in the confocal microscope as early as 3 h. Within the time-period investigated (up to 72 h) the accumulation of all markers increased continuously. Retrograde accumulations also occurred, and the immunofluorescence for the retrograde component, indicating recycling, was weaker than that for the anterograde component, suggesting that more than half of the vaults are degraded within the nerve terminal. High resolution immunofluorescence revealed a granular structure-in accordance with the biochemical characteristics of vaults. Of interest was the observation that the increase of vault immunoreactivity proximal to the crush accelerated with time after crushing, while that of SV2-containing particles appeared to decelerate, indicating that the crush procedure with time may have induced perikaryal alterations in the production and subsequent export to the axon of synaptic vesicles and vault protein. Our data show that ribonucleoprotein-immunoreactive particles can be actively transported within axons in situ from the soma to the nerve terminal and back. The results suggest that the transport of vaults is driven by fast axonal transport motors like the SV2-containing vesicles and mitochondria. Vaults exhibit an anterograde and a retrograde transport component, similar to that observed for the vesicular organelles carrying SV2 and for mitochondria. Although the function of vaults is still unknown studies of the axonal transport of this organelle may reveal insights into the mechanisms of cellular transport of ribonucleoprotein particles in general.