Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eun-Churn Park is active.

Publication


Featured researches published by Eun-Churn Park.


Journal of Intelligent Material Systems and Structures | 2010

Experimental Investigation of MR Damper-based Semiactive Control Algorithms for Full-scale Five-story Steel Frame Building

Heon-Jae Lee; Hyung-Jo Jung; Seok-Jun Moon; Sung-Kyung Lee; Eun-Churn Park; Kyung-Won Min

In this study, the effectiveness of various semiactive control algorithms based on magnetorheological (MR) dampers is experimentally investigated for seismic protection of a full-scale five-story steel frame building structure. This may be the first experimental comparison of several semiactive control algorithms using a full-scale test structure. The MR damper-based control systems are realized, when an MR damper is designed by deriving a suboptimal design procedure considering optimization problem and magnetic analysis, and then a damper with the capacity of 1.0 ton is manufactured. In the experiments, a linear active mass driver and the linear shaker seismic simulation testing method are used to excite the building structure in order to match the full-scale building vibrate as if the building undergoes an earthquake. Under the four historical earthquakes and one filtered artificial earthquake, the performance of the semiactive control algorithms including the passive optimal case is experimentally evaluated. From the experimental results, one can conclude that the Lyapunov and semiactive neuro-control algorithms are appropriate in reducing accelerations of the structural system, and the passive optimal case and the maximum energy dissipation algorithm show the excellent performance in reducing the first floor displacement.


Journal of Intelligent Material Systems and Structures | 2010

Real-time Hybrid Test on a Semi-actively Controlled Building Structure Equipped with Full-scale MR Dampers

Eun-Churn Park; Kyung-Won Min; Sung-Kyung Lee; Sang-Hyun Lee; Heon-Jae Lee; Seok-Jun Moon; Hyung-Jo Jung

The real-time hybrid testing method (RT-HYTEM) is a structural testing technique in which the numerical integration of the equation of motion for a numerical substructure and the physical testing for an experimental substructure are performed simultaneously in real-time. This article presents the quantitative evaluation of the seismic performance of a building structure installed with a magnetorheological (MR) damper using RT-HYTEM. A building model is identified from the force-vibration testing results of a full-scale five-story building and is used as the numerical substructure, and an MR damper corresponding to an experimental substructure is physically tested using a universal testing machine (UTM). First, the force required to drive the displacement of the story, at which the MR damper is located, is measured from the load cell attached to the UTM. The measured force is then returned to a control computer to calculate the response of the numerical substructure. Finally, the experimental substructure is excited by the UTM with the calculated response of the numerical substructure. The RT-HYTEM implemented in this study is validated because the real-time hybrid testing results obtained by application of sinusoidal and earthquake excitations and the corresponding analytical results obtained using the Bouc-Wen model as the control force of the MR damper with respect to input currents are in good agreement. Also, the results from RT-HYTEM for the passive -on and -off control show that the structural responses did not decrease further by the excessive control force, but decreased due to the increase of the current applied to the MR damper. Also, two semi-active control algorithms (modulated homogeneous friction and the clipped-optimal control algorithms) are applied to the MR damper in order to optimally control the structural responses. To compare the RT-HYTEM and numerical results, Bouc-Wen model parameters are identified for each input current. The results of the comparison of experimental and numerical responses show that it is more practical to use RT-HYTEM in semi-active devices such as MR dampers. The test results show that a control algorithm can be experimentally applied to the MR damper using RT-HYTEM. This article provides a discussion on each algorithm with respect to the seismic performances.


Transactions of The Korean Society for Noise and Vibration Engineering | 2009

Dynamic Characteristics of Tuned Liquid Column Dampers Using Shaking Table Test

Kyung-Won Min; Eun-Churn Park

Shaking table test was carried out to obtain dynamic characteristics of TLCDs with uniform and non-uniform sections for both horizontal and vertical tubes. The input to the table is harmonic acceleration with constant magnitude. The output is horizontal dynamic force which is measured by load cell installed below the TLCD. Transfer functions are experimentally obtained using the ratio of input and output. Natural frequency, the most important design factor, is compared to that by theoretical equation for TLCDs with five different water levels. System identification process is performed for experimentally obtained transfer functions to find the dynamic characteristics of head loss coefficient and effective mass of TLCDs. It is found that their magnitudes are larger for a TLCD with non-uniform section than with uniform section and natural frequencies are close to theoretical ones.


Transactions of The Korean Society for Noise and Vibration Engineering | 2008

A Tuned Liquid Mass Damper(TLMD) for Controlling Bi-directional Responses of a Building Structure

Jae-Sung Heo; Eun-Churn Park; Sang-Hyun Lee; Sung-Kyung Lee; Hongjin Kim; Bong-Ho Cho; Ji-Seong Jo; Dong-Young Kim; Kyung-Won Min

This paper presents a design of a tuned liquid mass damper(TLMD) for controlling bi-directional response of high-rise building structure subjected to windload. The proposed damper behaves as a tuned mass damper(TMD) of which mass is regarded as the mass of a tuned liquid column damper(TLCD) and the case wall of the TLCD itself in one direction and the TLCD in the other direction. Because the proposed device has coupled design parameter along two orthogonal directions, it is very important to select designing components by optimal fine tuning. In the designing TLMD, for easy maintenance, the rubber-bearing with small springs was applied in TMD direction. In this study, the Songdo New City Tower 1A in Korea, which has been designed and constructed two TLCDs in order to control bi-directional response, was chosen as the model building structure. The results of rotation test proved the effectiveness of bi-directional behavior of TLMD.


ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS2008 | 2008

Real-Time Hybrid Testing of a Steel-Structure Equipped With Large-Scale Magneto-Rheological Dampers Applying Semi-Active Control Algorithms

Eun-Churn Park; Sung-Kyung Lee; Heon-Jae Lee; Seok-Joon Moon; Hyung-Jo Jung; Byoung-Wook Moon; Kyung-Won Min

This study introduces the quantitative evaluation of the seismic performance of a building structure equipped with MR dampers by using real-time hybrid testing method (RT-HYTEM). A real-scaled 5-story building is used as the numerical substructure, and MR dampers corresponding to an experimental substructure is physically tested by using UTM. First, the force required to drive the displacement of the story, at which the MR damper is located, is measured from the load cell attached to UTM. Then, the measured force is returned to a control computer to calculate the response of the numerical substructure. Finally, the experimental substructure is excited by UTM with the calculated response of the numerical substructure. The RT-HYTEM implemented in this study is validated for that the real-time hybrid testing results obtained by application of sinusoidal and earthquake excitations and the corresponding analytical results obtained by using the Bouc-Wen model as the control force of the MR damper respect to input currents were in good agreement. Furthermore, semi-active control algorithms were applied to the MR damper. The comparison results of experimental and numerical responses demonstrated that using RT-HYTEM was more reasonable in semi-active devices such as MR dampers having strong nonlinearity.Copyright


Transactions of The Korean Society for Noise and Vibration Engineering | 2008

Performance Evaluation of a Large-scale MR Damper for Controlling Seismic Responses Using a Real-time Hybrid Test Method

Eun-Churn Park; Sung-Kyung Lee; Kyung-Jo Youn; Hee-San Chung; Heon-Jae Lee; Kang-Min Choi; Suk-Jun Moon; Hyung-Jo Jung; Kyung-Won Min

This paper presents real-time hybrid test method of large-scale MR damper applied to a building structure under seismic excitation. The real-time hybrid test using an actuator for the control performance evaluation of a MR damper controlling the response of earthquake-excited building structure is experimentally implemented. In the test, the building structure is used as a numerical part, on which a large-scale MR damper adopted as an experimental part was installed to reduce its response. At first, the force that is acting between a MR damper and building structure is measured from the load cell attached on the actuator system and is fed-back to the computer to control the motion of the actuator. Then, the actuator is so driven that the error between the interface displacement computed from the numerical building structure with the excitations of earthquake and the fed-back interface force and that measured from the actuator. The control efficiency of the MR damper used in this paper is experimentally confirmed by implementing this process of experiment on real-time.


Transactions of The Korean Society for Noise and Vibration Engineering | 2008

Performance Evaluation of Decentralized Control Algorithm of a Full-scale 5-story Structure Installed with Semi-active MR Damper Excited by Seismic Load

Kyung-Jo Youn; Eun-Churn Park; Heon-Jae Lee; Seok-Jun Moon; Kyung-Won Min; Hyung-Jo Jung; Sang-Hyun Lee

In this study, seismic response control performance of decentralized response-dependent MR damper which generates the control force using only the response of damper-installed floor, was experimentally investigated through the tests of a full-scale structure installed with large MR dampers. The performance of the decentralized control algorithm was compared to those of the centralized ones such as Lyapunov, modulated homogeneous friction, and clipped-optimal control. Hybrid mass damper were controlled to induce seismic response of the full-scale structure under El Centro earthquake. Experimental results indicated that the proposed decentralized MR damper provided superior or equivalent performance to centralized one in spite of using damper-installed floor response for calculating input voltage to MR damper.


Journal of The Earthquake Engineering Society of Korea | 2006

Forced Vibration Test of a Real-Scale Structure and Design of HMD Controllers for Simulating Earthquake Response

Sang-Hyun Lee; Eun-Churn Park; Kyung-Jo Youn; Sung-Kyung Lee; Eun-Jong Yu; Kyung-Won Min; Lan Chung; Jeong-Ki Min; Young-Chan Kim

Forced vibration testing is important for correlating the mathematical model of a structure with the real one and for evaluating the performance of the real structure. There exist various techniques available for evaluating the seismic performance using dynamic and static measurements. In this paper, full scale forced vibration tests simulating earthquake response are implemented by using a hybrid mass damper. The finite element (FE) model of the structure was analytically constructed using ANSYS and the model was updated using the results experimentally measured by the forced vibration test. Pseudo-earthquake excitation tests showed that HMD induced floor responses coincided with the earthquake induced ones which were numerically calculated based on the updated FE model.


Transactions of The Korean Society for Noise and Vibration Engineering | 2008

Vibration Control Performance of a Two-way Tuned Liquid Mass Damper Using Real-time Hybrid Shaking Table Testing Method

Jae-Sung Heo; Sung-Kyung Lee; Eun-Churn Park; Sang-Hyun Lee; Hongjin Kim; Ji-Seong Jo; Bong-Ho Cho; Kyung-Won Min

An experimental real-time hybrid method, which implements the vibration control of a building structure with only a two-way TLMD, is proposed and verified through a shaking table test. The building structure is divided into the upper experimental TLMD and the lower numerical structural part. The shaking table vibrates the TLMD with the response calculated from the numerical substructure, which is subjected to the excitations of the measured interface control force at its top story and sinusoidal waves input at its base. The results show that the conventional method can be replaced by the proposed methodology with a simple installation and accuracy for evaluating the control performance of a TLMD.


ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems | 2008

System Identification and Pseudo-Earthquake Excitation of a Real-Scaled 5 Story Steel Frame Structure

Eun-Churn Park; Sang-Hyun Lee; Sung-Kyung Lee; Hee-San Chung; Kyung-Won Min

The accurate identification of the dynamic response characteristics of a building structure excited by input signals such as real earthquake or wind load is essential not only for the evaluation of the safety and serviceability of the building structure, but for the verification of an analytical model used in the seismic or wind design. In the field of system identification (SI) which constructs system matrices describing the accurate input/output relationship, it is critical that input should have enough energy to excite fundamental structural modes and a good quality of output containing structural information should be measured. In this study forced vibration testing which is important for correlating the mathematical model of a structure with the real one and for evaluating the performance of the real structure was implemented. There exist various techniques available for evaluating the seismic performance using dynamic and static measurements. In this paper, full scale forced vibration tests simulating earthquake response are implemented by using a hybrid mass damper. The finite element (FE) model of the structure was analytically constructed using ANSYS and the model was updated using the results experimentally measured by the forced vibration test. Pseudo-earthquake excitation tests showed that HMD induced floor responses coincided with the earthquake induced ones which was numerically calculated based on the updated FE model.Copyright

Collaboration


Dive into the Eun-Churn Park's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge