Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eun Sook Yoo is active.

Publication


Featured researches published by Eun Sook Yoo.


BMC Immunology | 2012

Fermented fish oil suppresses T helper 1/2 cell response in a mouse model of atopic dermatitis via generation of CD4+CD25+Foxp3+ T cells

Sang Chul Han; Gyeoung Jin Kang; Yeong Jong Ko; Hee Kyoung Kang; Sang Wook Moon; Yong Seok Ann; Eun Sook Yoo

BackgroundAllergic skin inflammation such as atopic dermatitis (AD), which is characterized by pruritus and inflammation, is regulated partly through the activity of regulatory T cells (Tregs). Tregs play key roles in the immune response by preventing or suppressing the differentiation, proliferation and function of various immune cells, including CD4+ T cells. Recent studies report that fermentation has a tremendous capacity to transform chemical structures or create new substances, and the omega-3 polyunsaturated fatty acids (n-3 PUFAs) in fish oil can reduce inflammation in allergic patients. The beneficial effects of natural fish oil (NFO) have been described in many diseases, but the mechanism by which fermented fish oil (FFO) modulates the immune system and the allergic response is poorly understood. In this study, we produced FFO and tested its ability to suppress the allergic inflammatory response and to activate CD4+CD25+Foxp3+ Tregs.ResultsThe ability of FFO and NFO to modulate the immune system was investigated using a mouse model of AD. Administration of FFO or NFO in the drinking water alleviated the allergic inflammation in the skin, and FFO was more effective than NFO. FFO treatment did increase the expression of the immune-suppressive cytokines TGF-β and IL-10. In addition, ingestion of FFO increased Foxp3 expression and the number of CD4+CD25+Foxp3+ Tregs compared with NFO.ConclusionsThese results suggest that the anti-allergic effect of FFO is associated with enrichment of CD4+CD25+ Foxp3+ T cells at the inflamed sites and that FFO may be effective in treating the allergic symptoms of AD.


Journal of Investigative Dermatology | 2015

Docosahexaenoic acid alleviates atopic dermatitis by generating tregs and IL-10/TGF-β-modified macrophages via a TGF-β-dependent mechanism

Sang Chul Han; Dong Hwan Koo; Na Jin Kang; Weon Jong Yoon; Gyeoung Jin Kang; Hee Kyoung Kang; Eun Sook Yoo

Regulatory T cells (Tregs) have key roles in the immune response by suppressing the differentiation and proliferation of various immune cells. The beneficial effects of docosahexaenoic acid (DHA) have been described for many diseases; however, the mechanism by which it modulates the immune system is poorly understood. Therefore, the aim of this study was to examine whether DHA suppresses allergic reactions and upregulates the generation of CD4(+)Foxp3(+) T cells. We also examined the effects of transfusing interleukin-10/transforming growth factor-β (TGF-β)-modified macrophages (M2 macrophages) treated with DHA into a mouse model of atopic dermatitis. Here, we show that administration of DHA upregulates the generation of TGF-β-dependent CD4(+) forkhead box protein 3 (Foxp3(+)) Tregs. DHA induced T-cell hypo-responsiveness and downregulated cytokines associated with T helper (Th)-1, Th2, and Th17 cells. The differentiation of Foxp3(+) Tregs into CD4(+) T cells was directly mediated by DHA-M2 macrophages, which deactivated effector macrophages and inhibited CD4(+) T-cell proliferation. DHA showed therapeutic effects in mice with experimental atopic dermatitis. These results show that DHA enhances the function of M2 macrophages and that the generation of Tregs effectively protects mice against an inflammatory immune disorder. Thus, DHA may be a useful therapeutic strategy for treating chronic inflammatory diseases.


Marine Drugs | 2012

An Ethanol Extract Derived from Bonnemaisonia hamifera Scavenges Ultraviolet B (UVB) Radiation-Induced Reactive Oxygen Species and Attenuates UVB-Induced Cell Damage in Human Keratinocytes

Mei Jing Piao; Yu Jae Hyun; Suk Ju Cho; Hee Kyoung Kang; Eun Sook Yoo; Young Sang Koh; Nam Ho Lee; Mi Hee Ko; Jin Won Hyun

The present study investigated the photoprotective properties of an ethanol extract derived from the red alga Bonnemaisonia hamifera against ultraviolet B (UVB)-induced cell damage in human HaCaT keratinocytes. The Bonnemaisonia hamifera ethanol extract (BHE) scavenged the superoxide anion generated by the xanthine/xanthine oxidase system and the hydroxyl radical generated by the Fenton reaction (FeSO4 + H2O2), both of which were detected by using electron spin resonance spectrometry. In addition, BHE exhibited scavenging activity against the 1,1-diphenyl-2-picrylhydrazyl radical and intracellular reactive oxygen species (ROS) that were induced by either hydrogen peroxide or UVB radiation. BHE reduced UVB-induced apoptosis, as shown by decreased apoptotic body formation and DNA fragmentation. BHE also attenuated DNA damage and the elevated levels of 8-isoprostane and protein carbonyls resulting from UVB-mediated oxidative stress. Furthermore, BHE absorbed electromagnetic radiation in the UVB range (280–320 nm). These results suggest that BHE protects human HaCaT keratinocytes against UVB-induced oxidative damage by scavenging ROS and absorbing UVB photons, thereby reducing injury to cellular components.


International Journal of Molecular Sciences | 2011

Protective Effect of the Ethyl Acetate Fraction of Sargassum muticum Against Ultraviolet B–Irradiated Damage in Human Keratinocytes

Mei Jing Piao; Weon Jong Yoon; Hee Kyoung Kang; Eun Sook Yoo; Young Sang Koh; Dong Sam Kim; Nam Ho Lee; Jin Won Hyun

The aim of this study was to investigate the cytoprotective properties of the ethyl acetate fraction of Sargassum muticum (SME) against ultraviolet B (UVB)-induced cell damage in human keratinocytes (HaCaT cells). SME exhibited scavenging activity toward the 1,1-diphenyl-2-picrylhydrazyl radicals and hydrogen peroxide (H2O2) and UVB-induced intracellular reactive oxygen species (ROS). SME also scavenged the hydroxyl radicals generated by the Fenton reaction (FeSO4 + H2O2), which was detected using electron spin resonance spectrometry. In addition, SME decreased the level of lipid peroxidation that was increased by UVB radiation, and restored the level of protein expression and the activities of antioxidant enzymes that were decreased by UVB radiation. Furthermore, SME reduced UVB-induced apoptosis as shown by decreased DNA fragmentation and numbers of apoptotic bodies. These results suggest that SME protects human keratinocytes against UVB-induced oxidative stress by enhancing antioxidant activity in cells, thereby inhibiting apoptosis.


International Journal of Molecular Sciences | 2011

Antioxidant Effects of the Ethanol Extract from Flower of Camellia japonica via Scavenging of Reactive Oxygen Species and Induction of Antioxidant Enzymes

Mei Jing Piao; Eun Sook Yoo; Young Sang Koh; Hee Kyoung Kang; Junoh Kim; Yong Jin Kim; Hak Hee Kang; Jin Won Hyun

The aim of this study was to investigate the antioxidant properties of the ethanol extract of the flower of Camellia japonica (Camellia extract). Camellia extract exhibited 1,1-diphenyl-2-picrylhydrazyl radical and intracellular reactive oxygen species (ROS) scavenging activity in human HaCaT keratinocytes. In addition, Camellia extract scavenged superoxide anion generated by xanthine/xanthine oxidase and hydroxyl radical generated by the Fenton reaction (FeSO4 + H2O2) in a cell-free system, which was detected by electron spin resonance spectrometry. Furthermore, Camellia extract increased the protein expressions and activity of cellular antioxidant enzymes, such as superoxide dismutase, catalase and glutathione peroxidase. These results suggest that Camellia extract exhibits antioxidant properties by scavenging ROS and enhancing antioxidant enzymes. Camellia extract contained quercetin, quercetin-3-O-glucoside, quercitrin and kaempferol, which are antioxidant compounds.


Marine Drugs | 2015

Diphlorethohydroxycarmalol Inhibits Interleukin-6 Production by Regulating NF-κB, STAT5 and SOCS1 in Lipopolysaccharide-Stimulated RAW264.7 Cells

Na Jin Kang; Sang Chul Han; Gyeoung Jin Kang; Dong Hwan Koo; Young Sang Koh; Jin Won Hyun; Nam Ho Lee; Mi Hee Ko; Hee Kyoung Kang; Eun Sook Yoo

Diphlorethohydroxycarmalol (DPHC) is a phlorotannin compound isolated from Ishige okamuarae, a brown alga. This study was conducted to investigate the anti-inflammatory effect and action mechanism of DPHC in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We found that DPHC strongly reduces the production of interleukin 6 (IL-6), but not that of tumor necrosis factor-alpha (TNF-α) induced by LPS. DPHC (12.5 and 100 μM) suppressed the phosphorylation and the nuclear translocation of NF-kappaB (NF-κB), a central signaling molecule in the inflammation process induced by LPS. The suppressor of cytokine signaling 1 (SOCS1) is a negative feedback regulator of Janus kinase (Jak)-signal transducer and activator of transcription (STAT) signaling. In this study, DPHC inhibited STAT5 expression and upregulated that of SOCS1 at a concentration of 100 μM. Furthermore, N-tosyl-l-phenylalanine chloromethyl ketone (TPCK) (a specific NF-κB inhibitor) and JI (a specific Jak2 inhibitor) reduced the production of IL-6, but not that of tumor necrosis factor-alpha (TNF-α) in LPS-stimulated RAW 264.7 macrophages. These findings demonstrate that DPHC inhibits IL-6 production via the downregulation of NF-κB and Jak2-STAT5 pathway and upregulation of SOCS1.


Journal of Bioscience and Bioengineering | 2013

Photoprotective effect of Undaria crenata against ultraviolet B-induced damage to keratinocytes.

Yu Jae Hyun; Mei Jing Piao; Mi Hee Ko; Nam Ho Lee; Hee Kyoung Kang; Eun Sook Yoo; Young Sang Koh; Jin Won Hyun

Chronic exposure of the skin to ultraviolet B (UVB) radiation induces oxidative stress, which plays a crucial role in the induction of skin cancer. The brown alga Undaria crenata is a potential source of antioxidant and anti-apoptotic compounds due to its capacity to produce protective compounds against environmental factors, including UV radiation. The aim of this study was to investigate the photoprotective properties of an U. crenata ethanol extract (UCE) against UVB-induced cell damage in human HaCaT keratinocytes. UCE exhibited absorbing effect of UVB (280-320xa0nm) and scavenging activity against the 1,1-diphenyl-2-picrylhydrazyl radical and intracellular reactive oxygen species induced by hydrogen peroxide and UVB rays. Furthermore, electron spin resonance spectrometry revealed the significant scavenging effect of UCE against superoxide anion and hydroxyl radical. UCE reduced UVB-induced apoptosis, as shown by a decrease in apoptotic bodies and nuclear and DNA fragmentation, resulting in the recovery of cell viability. UCE also decreased the degree of UVB-induced oxidative stress to lipids, proteins, and DNA as shown by a decrease in 8-isoprostane level, protein carbonylation and DNA tails. These results suggest that UCE protects human keratinocytes against UVB-induced oxidative stress.


Environmental Toxicology and Pharmacology | 2016

Photo-protective effect of sargachromenol against UVB radiation-induced damage through modulating cellular antioxidant systems and apoptosis in human keratinocytes.

Pattage Madushan Dilhara Jayatissa Fernando; Mei Jing Piao; Susara Ruwan Kumara Madduma Hewage; Hee Kyoung Kang; Eun Sook Yoo; Young Sang Koh; Mi Hee Ko; Chang Sik Ko; Sang Hee Byeon; Seung Ri Mun; Nam Ho Lee; Jin Won Hyun

The aim of this study was to evaluate the photo-preventive effects of sargachromenol (SC) against ultraviolet B (UVB)-induced oxidative stress in human keratinocytes via assessing the antioxidant properties and underlying molecular mechanisms. SC exhibited a significant scavenging effect on UVB-induced intracellular reactive oxygen species (ROS). SC attenuated UVB-induced oxidative macromolecular damage, including the protein carbonyl content, DNA strand break, and 8-isoprostane level. Furthermore, SC decreased UVB-induced Bax, cleaved caspase-9, and cleaved caspase-3 protein levels, but increased that of Bcl-2, which are well-known key mediators of apoptosis. Moreover, SC increased superoxide dismutase, catalase, and heme oxygenase-1 protein expression. Pre-treatment with SC upregulated the main transcription factor of antioxidant enzymes, erythroid 2-related factor 2 level, which was reduced by UVB irradiation. Extracellular signal-regulated kinase (ERK) and Jun N-terminal kinases (JNK) are involved in the regulation of many cellular events, including apoptosis. SC treatment reversed ERK and JNK activation induced by UVB. Collectively, these data indicate that SC can provide remarkable cytoprotection against the adverse effects of UVB radiation by modulating cellular antioxidant systems, and suggest the potential of developing a medical agent for ROS-induced skin diseases.


Applied Biochemistry and Biotechnology | 2014

Protective Effect of 3,4-Dihydroxybenzoic Acid Isolated from Cladophora wrightiana Harvey Against Ultraviolet B Radiation-Induced Cell Damage in Human HaCaT Keratinocytes

Ji Won Cha; Mei Jing Piao; Ki Cheon Kim; Jian Zheng; Cheng Wen Yao; Chang Lim Hyun; Hee Kyoung Kang; Eun Sook Yoo; Young Sang Koh; Nam Ho Lee; Mi Hee Ko; Jin Won Hyun

The aim of the present study was to elucidate the protective properties of 3,4-dihydroxybenzoic acid (DBA) isolated from Cladophora wrightiana Harvey (a green alga) against ultraviolet B (UVB)-induced damage to human HaCaT keratinocytes. DBA exhibited scavenging actions against the 1,1-diphenyl-2-picrylhydrazyl radical, the superoxide anion, and the hydroxyl radical. Furthermore, DBA decreased the levels of intracellular reactive oxygen species generated by hydrogen peroxide or UVB treatment of the cells. DBA also decreased the UVB-augmented levels of phospho-histone H2A.X and the extent of comet tail formation, which are both indications of DNA damage. In addition, the compound safeguarded keratinocytes from UVB-induced injury by reversing the production of apoptotic bodies, overturning the disruption of mitochondrial membrane potential, increasing the expression of the anti-apoptotic protein, B-cell lymphoma 2, and decreasing the expression of the pro-apoptotic proteins, Bcl-2-associated X and cleaved caspase-3. Taken together, these results demonstrate that DBA isolated from a green alga protects human keratinocytes against UVB-induced oxidative stress and apoptosis.


Food and Chemical Toxicology | 2012

Sargachromanol G regulates the expression of osteoclastogenic factors in human osteoblast-like MG-63 cells

Weon Jong Yoon; Soo Jin Heo; Sang Chul Han; Hye Ja Lee; Gyeoung Jin Kang; Eun Jin Yang; Sun Soon Park; Hee Kyoung Kang; Eun Sook Yoo

Bone diseases are characterized by the presence of pro-inflammatory cytokines that regulate bone turnover. The receptor activator of NF-κB ligand (RANKL) is a soluble osteoblast-derived protein that induces bone resorption through osteoclast differentiation and activation. Sargachromanol G (SG) was isolated from the brown algae Sargassum siliquastrum; SG has anti-osteoclastogenic activity, but its mechanism of action and its active components remain largely unknown. In the present study, we investigated the anti-osteoclastogenic effects of SG on the expression of interleukin-1β (IL-1β)-induced osteoclastogenic factors (PGE(2), COX-2, IL-6, OPG, and RANKL) in the human osteoblast cell line MG-63. We also examined the role of the nuclear factor-κB (NF-κB) and the mitogen-activated protein kinase (MAPK) signaling pathways in IL-1β-stimulated MG-63 cells. SG dose-dependently inhibited the production of osteoclastogenic factors in MG-63 cells. SG also inhibited phosphorylation of MAPK (ERK1/2, p38, and JNK) and NF-κB (p65, p50, and IκB-α). These results suggest that the anti-osteoporotic effect of SG may be because of the modulation of osteoclastogenic factors via suppression of MAPK and NF-κB activation.

Collaboration


Dive into the Eun Sook Yoo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jin Won Hyun

Jeju National University

View shared research outputs
Top Co-Authors

Avatar

Young Sang Koh

Jeju National University

View shared research outputs
Top Co-Authors

Avatar

Mei Jing Piao

Jeju National University

View shared research outputs
Top Co-Authors

Avatar

Jung Il Kang

Jeju National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weon Jong Yoon

Jeju National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nam Ho Lee

University of Illinois at Urbana–Champaign

View shared research outputs
Researchain Logo
Decentralizing Knowledge