Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where EunGi Kim is active.

Publication


Featured researches published by EunGi Kim.


Journal of Biological Chemistry | 2013

Rhamnetin and Cirsiliol Induce Radiosensitization and Inhibition of Epithelial-Mesenchymal Transition (EMT) by miR-34a-mediated Suppression of Notch-1 Expression in Non-small Cell Lung Cancer Cell Lines

JiHoon Kang; EunGi Kim; Wanyeon Kim; Ki Moon Seong; HyeSook Youn; Jung Woo Kim; Joon Kim; BuHyun Youn

Background: Notch-1 plays a critical role in cell fate decisions by modulating cellular processes under irradiation. Results: Irradiation-induced Notch-1 overexpression promoted survival and EMT in NSCLC, whereas rhamnetin and cirsiliol inhibited these effects via miR-34a-mediated Notch-1 down-regulation. Conclusion: Rhamnetin and cirsiliol suppress Notch-1-mediated radioresistance and EMT phenotypes in NSCLC. Significance: Rhamnetin and cirsiliol can act as novel radiosensitizers by inhibiting radiation-induced Notch-1 signaling. Radioresistance is a major cause of decreasing the efficiency of radiotherapy for non-small cell lung cancer (NSCLC). To understand the radioresistance mechanisms in NSCLC, we focused on the radiation-induced Notch-1 signaling pathway involved in critical cell fate decisions by modulating cell proliferation. In this study, we investigated the use of Notch-1-regulating flavonoid compounds as novel therapeutic drugs to regulate radiosensitivity in NSCLC cells, NCI-H1299 and NCI-H460, with different levels of radioresistance. Rhamnetin and cirsiliol were selected as candidate Notch-1-regulating radiosensitizers based on the results of assay screening for activity and pharmacological properties. Treatment with rhamnetin or cirsiliol reduced the proliferation of NSCLC cells through the suppression of radiation-induced Notch-1 expression. Indeed, rhamnetin and cirsiliol increased the expression of tumor-suppressive microRNA, miR-34a, in a p53-dependent manner, leading to inhibition of Notch-1 expression. Consequently, reduced Notch-1 expression promoted apoptosis through significant down-regulation of the nuclear factor-κB pathway, resulting in a radiosensitizing effect on NSCLC cells. Irradiation-induced epithelial-mesenchymal transition was also notably attenuated in the presence of rhamnetin and cirsiliol. Moreover, an in vivo xenograft mouse model confirmed the radiosensitizing and epithelial-mesenchymal transition inhibition effects of rhamnetin and cirsiliol we observed in vitro. In these mice, tumor volume was significantly reduced by combinational treatment with irradiation and rhamnetin or cirsiliol compared with irradiation alone. Taken together, our findings provided evidence that rhamnetin and cirsiliol can act as promising radiosensitizers that enhance the radiotherapeutic efficacy by inhibiting radiation-induced Notch-1 signaling associated with radioresistance possibly via miR-34a-mediated pathways.


Cancer Research | 2014

PAK1 tyrosine phosphorylation is required to induce epithelial-mesenchymal transition and radioresistance in lung cancer cells

EunGi Kim; HyeSook Youn; TaeWoo Kwon; Beomseok Son; JiHoon Kang; Hee Jung Yang; Ki Moon Seong; Wanyeon Kim; BuHyun Youn

The p21-activated Ser/Thr kinase 1 (PAK1) kinase has an essential role in tumorigenesis and cell survival in many cancers, but its regulation is not fully understood. In this study, we showed that in response to irradiation of lung cancer cells, PAK1 was upregulated, tyrosine phosphorylated, and translocated to the nucleus. Tyrosine phosphorylation relied upon JAK2 kinase activity and was essential for PAK1 protein stability and binding to Snail. This radiation-induced JAK2-PAK1-Snail signaling pathway increased epithelial-mesenchymal transition (EMT) by regulating epithelial and mesenchymal cell markers. Notably, JAK2 inhibitors mediated radiosensitization and EMT blockade in a mouse xenograft model of lung cancer. Taken together, our findings offered evidence that JAK2 phosphorylates and stabilizes functions of PAK1 that promote EMT and radioresistance in lung cancer cells, with additional implications for the use of JAK2 inhibitors as radiosensitizers in lung cancer treatment.


Pharmacological Research | 2013

PIM1 kinase inhibitors induce radiosensitization in non-small cell lung cancer cells

Wanyeon Kim; HyeSook Youn; TaeWoo Kwon; JiHoon Kang; EunGi Kim; Beomseok Son; Hee Jung Yang; Youngmi Jung; BuHyun Youn

Radiotherapy plays a critical role in the treatment of non-small cell lung cancer (NSCLC). However, radioresistance is a major barrier against increasing the efficiency of radiotherapy for NSCLC. To understand the mechanisms underlying NSCLC radioresistance, we previously focused on the potential involvement of PIM1, PRAS40, FOXO3a, 14-3-3, and protein phosphatases. Among these proteins, PIM1 functioned as an oncogene and was found to act as a crucial mediator in radioresistant NSCLC cells. Therefore, we investigated the use of PIM1-specific inhibitors as novel therapeutic drugs to regulate radiosensitivity in NSCLC. After structure-based drug selection, SGI-1776, ETP-45299, and tryptanthrin were selected as candidates of PIM1 inhibitors that act as radiosensitizers. With irradiation, these drugs inhibited only PIM1 kinase activity without affecting PIM1 mRNA/protein levels or cellular localization. When PIM1 kinase activity was suppressed by these inhibitors, PRAS40 was not phosphorylated. Consequently, unphosphorylated PRAS40 did not form trimeric complexes with 14-3-3 and FOXO3a, leading to increased nuclear localization of FOXO3a. Nuclear FOXO3a promoted the expression of pro-apoptotic proteins such as Bim and FasL, resulting in a radiosensitizing effect on radioresistant NSCLC cells. Moreover, an in vivo xenograft mouse model confirmed this radiosensitizing effect induced by PIM1 inhibitors. In these model systems, tumor volume was significantly reduced by a combinational treatment with irradiation and PIM1 inhibitors compared to irradiation alone. Taken together, our findings provided evidence that PIM1-specific inhibitors, SGI-1776, ETP-45299, and tryptanthrin, can act as novel radiosensitizers to enhance the efficacy of radiotherapy by inhibiting irradiation-induced signaling pathway associated with radioresistance.


Oncotarget | 2017

The role of tumor microenvironment in therapeutic resistance

Beomseok Son; Sungmin Lee; HyeSook Youn; EunGi Kim; Wanyeon Kim; BuHyun Youn

Cancer cells undergo unlimited progression and survival owing to activation of oncogenes. However, support of the tumor microenvironment is essential to the formation of clinically relevant tumors. Recent evidence indicates that the tumor microenvironment is a critical regulator of immune escape, progression, and distant metastasis of cancer. Moreover, the tumor microenvironment is known to be involved in acquired resistance of tumors to various therapies. Despite significant advances in chemotherapy and radiotherapy, occurrence of therapeutic resistance leads to reduced efficacy. This review highlights myeloid cells, cancer-associated fibroblasts, and mesenchymal stem cells consisting of the tumor microenvironment, as well as the relevant signaling pathways that eventually render cancer cells to be therapeutically resistant.


Experimental Dermatology | 2015

Inhibition of hedgehog signalling attenuates UVB-induced skin photoageing

Wanyeon Kim; EunGi Kim; Hee Jung Yang; TaeWoo Kwon; SeoYoung Han; Sungmin Lee; HyeSook Youn; Youngmi Jung; ChulHee Kang; BuHyun Youn

The hedgehog (Hh) signalling pathway regulates normal development and cell proliferation in metazoan organisms, but its aberrant activation can promote tumorigenesis and progression of a variety of aggressive human cancers including skin cancer. Despite its importance, little is known about its role in photoageing, a type of UV‐induced skin lesions. In this study, we investigated the involvement of Hh signalling in the photoageing process as well as the use of an Hh‐regulating alkaloid compound as a novel therapeutic drug to regulate photoageing in keratinocytes. We found that UVB induced Hh signalling by the expression of Hh ligands and Hh‐mediated transcription factors, respectively. Moreover, UVB‐induced Hh activation relied on mitogen‐activated protein kinase (p38, ERK and JNK) activity and inflammatory responses (upregulation of COX‐2, IL‐1β, IL‐6 and TNF‐α), resulting in premature senescence and photoageing in vitro and in vivo. Notably, a selected Hh inhibitor, evodiamine, mediated photoageing blockade in a mouse skin model. Taken together, our findings demonstrated that Hh signalling is associated with UVB‐induced photoageing, while pharmacological inhibition of Hh signalling significantly reduced experimental photoageing, indicating its potential for use as a therapeutic target for this disease.


Experimental and Molecular Medicine | 2016

TFAP2C-mediated upregulation of TGFBR1 promotes lung tumorigenesis and epithelial–mesenchymal transition

Wanyeon Kim; EunGi Kim; Sungmin Lee; Daehoon Kim; Jahyun Chun; Kang Hyun Park; HyeSook Youn; BuHyun Youn

TFAP2C (transcription factor-activating enhancer-binding protein 2C) expression has been positively correlated with poor prognosis in patients with certain types of cancer, but the mechanisms underlying TFAP2C-mediated tumorigenesis in non-small-cell lung cancer (NSCLC) are still unknown. We previously performed a microarray analysis to identify TFAP2C regulation genes, and TGFBR1 (transforming growth factor-β receptor type 1) was found to be upregulated by TFAP2C. We observed that TFAP2C or TGFBR1 overexpression led to oncogenic properties, such as cell viability, proliferation and cell cycle progression. TGFBR1 upregulation induced by TFAP2C also promoted cell motility and migration, leading to malignant development. We also found that PAK1 (p21 protein (Cdc42/Rac)-activated kinase 1) signaling was involved in TFAP2C/TGFBR1-induced tumorigenesis. These results were confirmed by an in vivo xenograft model and patient tissue samples. This study shows that TFAP2C promoted tumor progression by upregulation of TGFBR1 and consequent activation of PAK1 signaling.


Scientific Reports | 2017

TRAF4 promotes lung cancer aggressiveness by modulating tumor microenvironment in normal fibroblasts

EunGi Kim; Wanyeon Kim; Sungmin Lee; Jahyun Chun; JiHoon Kang; Gaeul Park; IkJoon Han; Hee Jung Yang; HyeSook Youn; BuHyun Youn

Normal fibroblasts surrounding tumor cells play a crucial role in cancer progression through formation of the tumor microenvironment. Because factors secreted from normal fibroblasts can modulate the tumor microenvironment, it is necessary to identify key factors associated with regulation of secreted factors and to investigate the molecular mechanisms contributing to the tumor microenvironment formation process. In this study, we found that radiation induced the expression and K63-linkage poly-ubiquitination of TRAF4 in normal lung fibroblasts. The K63-linkage poly-ubiquitinated TRAF4 formed complexes with NOX2 or NOX4 by mediating phosphorylated p47-phox in normal lung fibroblasts. Moreover, we showed that TRAF4 stabilized NOX complexes by decreasing lysosomal degradation of NOX2 and NOX4 after irradiation. NOX complexes increased endosomal ROS levels that were permeable into cytoplasm, leading to NF-κB-mediated ICAM1 up-regulation. Soluble ICAM1 was subsequently secreted into conditioned media of radiation-activated normal lung fibroblasts. The conditioned media from irradiated normal fibroblasts enhanced proliferation and epithelial-mesenchymal transition of non-small cell lung cancer cells both in vitro and in vivo. These results demonstrate that TRAF4 in irradiated fibroblasts is positively associated with aggressiveness of adjacent cancer cells by altering the tumor microenvironment. Thus, we suggest that regulation of TRAF4 might be a promising strategy for cancer therapy.


Experimental and Molecular Medicine | 2018

RNF138-mediated ubiquitination of rpS3 is required for resistance of glioblastoma cells to radiation-induced apoptosis

Wanyeon Kim; HyeSook Youn; Sungmin Lee; EunGi Kim; Daehoon Kim; Jung Sub Lee; Jae-Myung Lee; BuHyun Youn

An interaction between ribosomal protein S3 (rpS3) and nuclear factor kappa B or macrophage migration inhibitory factor in non-small-cell lung cancer is responsible for radioresistance. However, the role of rpS3 in glioblastoma (GBM) has not been investigated to date. Here we found that in irradiated GBM cells, rpS3 translocated into the nucleus and was subsequently ubiquitinated by ring finger protein 138 (RNF138). Ubiquitin-dependent degradation of rpS3 consequently led to radioresistance in GBM cells. To elucidate the apoptotic role of rpS3, we analyzed the interactome of rpS3 in ΔRNF138 GBM cells. Nuclear rpS3 interacted with DNA damage inducible transcript 3 (DDIT3), leading to DDIT3-induced apoptosis in irradiated ΔRNF138 GBM cells. These results were confirmed using in vivo orthotopic xenograft models and GBM patient tissues. This study aims to clarify the role of RNF138 in GBM cells and demonstrate that rpS3 may be a promising substrate of RNF138 for the induction of GBM radioresistance, indicating RNF138 as a potential target for GBM therapy.


Cellular Physiology and Biochemistry | 2017

Surfactant Protein B Suppresses Lung Cancer Progression by Inhibiting Secretory Phospholipase A2 Activity and Arachidonic Acid Production

Sungmin Lee; Daehoon Kim; JiHoon Kang; EunGi Kim; Wanyeon Kim; HyeSook Youn; BuHyun Youn

Background/Aims: Radiotherapy is applied to patients with inoperable cancer types including advanced stage non-small cell lung cancer (NSCLC) and radioresistance functions as a critical obstacle in radiotherapy. This study was aimed to investigate the mechanism of radioresistance regulated by surfactant protein B (SP-B). Methods: To investigate the role of SP-B in radioresistance, ΔSFTPB A549 cell line was established and SP-B expression was analyzed. In response to ionizing radiation (IR), the change of SP-B expression was analyzed in A549 and NCI-H441 cell lines. Conditioned media (CM) from NSCLC cells were utilized to evaluate the downstream signaling pathway. The in vivo effects of SP-B were assessed through mouse xenograft model with intratumoral injection of CM. Results: In response to IR, NSCLC cell lines showed decreased SP-B regulated by the TGF-β signaling and decreased SP-B stimulated cell survival and epithelial-mesenchymal transition. Treatment with CM from irradiated cells activated sPLA2, enhanced protein kinase Cδ-MAPKs signaling pathway, and increased arachidonic acid production. We confirmed the in vivo roles of SP-B through mouse xenograft model. Conclusion: Our results revealed that down-regulation of SP-B was involved in the radiation-induced metastatic conversion of NSCLC and provided evidence that SP-B acted as a suppressor of NSCLC progression.


Scientific Reports | 2018

Radiation-induced overexpression of transthyretin inhibits retinol-mediated hippocampal neurogenesis

JiHoon Kang; Wanyeon Kim; HyunJeong Seo; EunGi Kim; Beomseok Son; Sungmin Lee; Gaeul Park; Sunmi Jo; Changjong Moon; HyeSook Youn; BuHyun Youn

Cranial irradiation is the main therapeutic strategy for treating primary and metastatic brain tumors. However, radiation is well-known to induce several unexpected side effects including emotional disorders. Although radiation-induced depression may cause decreased quality of life after radiotherapy, investigations of its molecular mechanism and therapeutic strategies are still insufficient. In this study, we found that behavioral symptoms of depression on mice models with the decrease of BrdU/NeuN- and Dcx-positive populations and MAP-2 expression in hippocampus were induced by cranial irradiation, and transthyretin (TTR) was highly expressed in hippocampus after irradiation. It was shown that overexpression of TTR resulted in the inhibition of retinol-mediated neuritogenesis. PAK1 phosphorylation and MAP-2 expression were significantly reduced by TTR overexpression following irradiation. Moreover, we observed that treatment of allantoin and neferine, the active components of Nelumbo nucifera, interrupted irradiation-induced TTR overexpression, consequently leading to the increase of PAK1 phosphorylation, neurite extension, BrdU/NeuN- and Dcx-positive populations, and MAP-2 expression. Behavioral symptoms of depression following cranial irradiation were also relieved by treatment of allantoin and neferine. These findings demonstrate that TTR plays a critical role in neurogenesis after irradiation, and allantoin and neferine could be potential drug candidates for recovering the effects of radiation on neurogenesis and depression.

Collaboration


Dive into the EunGi Kim's collaboration.

Top Co-Authors

Avatar

BuHyun Youn

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Wanyeon Kim

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

HyeSook Youn

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

JiHoon Kang

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Sungmin Lee

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Beomseok Son

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Hee Jung Yang

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

TaeWoo Kwon

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Daehoon Kim

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Gaeul Park

Pusan National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge