Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where JiHoon Kang is active.

Publication


Featured researches published by JiHoon Kang.


Journal of Biological Chemistry | 2013

Rhamnetin and Cirsiliol Induce Radiosensitization and Inhibition of Epithelial-Mesenchymal Transition (EMT) by miR-34a-mediated Suppression of Notch-1 Expression in Non-small Cell Lung Cancer Cell Lines

JiHoon Kang; EunGi Kim; Wanyeon Kim; Ki Moon Seong; HyeSook Youn; Jung Woo Kim; Joon Kim; BuHyun Youn

Background: Notch-1 plays a critical role in cell fate decisions by modulating cellular processes under irradiation. Results: Irradiation-induced Notch-1 overexpression promoted survival and EMT in NSCLC, whereas rhamnetin and cirsiliol inhibited these effects via miR-34a-mediated Notch-1 down-regulation. Conclusion: Rhamnetin and cirsiliol suppress Notch-1-mediated radioresistance and EMT phenotypes in NSCLC. Significance: Rhamnetin and cirsiliol can act as novel radiosensitizers by inhibiting radiation-induced Notch-1 signaling. Radioresistance is a major cause of decreasing the efficiency of radiotherapy for non-small cell lung cancer (NSCLC). To understand the radioresistance mechanisms in NSCLC, we focused on the radiation-induced Notch-1 signaling pathway involved in critical cell fate decisions by modulating cell proliferation. In this study, we investigated the use of Notch-1-regulating flavonoid compounds as novel therapeutic drugs to regulate radiosensitivity in NSCLC cells, NCI-H1299 and NCI-H460, with different levels of radioresistance. Rhamnetin and cirsiliol were selected as candidate Notch-1-regulating radiosensitizers based on the results of assay screening for activity and pharmacological properties. Treatment with rhamnetin or cirsiliol reduced the proliferation of NSCLC cells through the suppression of radiation-induced Notch-1 expression. Indeed, rhamnetin and cirsiliol increased the expression of tumor-suppressive microRNA, miR-34a, in a p53-dependent manner, leading to inhibition of Notch-1 expression. Consequently, reduced Notch-1 expression promoted apoptosis through significant down-regulation of the nuclear factor-κB pathway, resulting in a radiosensitizing effect on NSCLC cells. Irradiation-induced epithelial-mesenchymal transition was also notably attenuated in the presence of rhamnetin and cirsiliol. Moreover, an in vivo xenograft mouse model confirmed the radiosensitizing and epithelial-mesenchymal transition inhibition effects of rhamnetin and cirsiliol we observed in vitro. In these mice, tumor volume was significantly reduced by combinational treatment with irradiation and rhamnetin or cirsiliol compared with irradiation alone. Taken together, our findings provided evidence that rhamnetin and cirsiliol can act as promising radiosensitizers that enhance the radiotherapeutic efficacy by inhibiting radiation-induced Notch-1 signaling associated with radioresistance possibly via miR-34a-mediated pathways.


Cancer Research | 2014

PAK1 tyrosine phosphorylation is required to induce epithelial-mesenchymal transition and radioresistance in lung cancer cells

EunGi Kim; HyeSook Youn; TaeWoo Kwon; Beomseok Son; JiHoon Kang; Hee Jung Yang; Ki Moon Seong; Wanyeon Kim; BuHyun Youn

The p21-activated Ser/Thr kinase 1 (PAK1) kinase has an essential role in tumorigenesis and cell survival in many cancers, but its regulation is not fully understood. In this study, we showed that in response to irradiation of lung cancer cells, PAK1 was upregulated, tyrosine phosphorylated, and translocated to the nucleus. Tyrosine phosphorylation relied upon JAK2 kinase activity and was essential for PAK1 protein stability and binding to Snail. This radiation-induced JAK2-PAK1-Snail signaling pathway increased epithelial-mesenchymal transition (EMT) by regulating epithelial and mesenchymal cell markers. Notably, JAK2 inhibitors mediated radiosensitization and EMT blockade in a mouse xenograft model of lung cancer. Taken together, our findings offered evidence that JAK2 phosphorylates and stabilizes functions of PAK1 that promote EMT and radioresistance in lung cancer cells, with additional implications for the use of JAK2 inhibitors as radiosensitizers in lung cancer treatment.


Pharmacological Research | 2013

PIM1 kinase inhibitors induce radiosensitization in non-small cell lung cancer cells

Wanyeon Kim; HyeSook Youn; TaeWoo Kwon; JiHoon Kang; EunGi Kim; Beomseok Son; Hee Jung Yang; Youngmi Jung; BuHyun Youn

Radiotherapy plays a critical role in the treatment of non-small cell lung cancer (NSCLC). However, radioresistance is a major barrier against increasing the efficiency of radiotherapy for NSCLC. To understand the mechanisms underlying NSCLC radioresistance, we previously focused on the potential involvement of PIM1, PRAS40, FOXO3a, 14-3-3, and protein phosphatases. Among these proteins, PIM1 functioned as an oncogene and was found to act as a crucial mediator in radioresistant NSCLC cells. Therefore, we investigated the use of PIM1-specific inhibitors as novel therapeutic drugs to regulate radiosensitivity in NSCLC. After structure-based drug selection, SGI-1776, ETP-45299, and tryptanthrin were selected as candidates of PIM1 inhibitors that act as radiosensitizers. With irradiation, these drugs inhibited only PIM1 kinase activity without affecting PIM1 mRNA/protein levels or cellular localization. When PIM1 kinase activity was suppressed by these inhibitors, PRAS40 was not phosphorylated. Consequently, unphosphorylated PRAS40 did not form trimeric complexes with 14-3-3 and FOXO3a, leading to increased nuclear localization of FOXO3a. Nuclear FOXO3a promoted the expression of pro-apoptotic proteins such as Bim and FasL, resulting in a radiosensitizing effect on radioresistant NSCLC cells. Moreover, an in vivo xenograft mouse model confirmed this radiosensitizing effect induced by PIM1 inhibitors. In these model systems, tumor volume was significantly reduced by a combinational treatment with irradiation and PIM1 inhibitors compared to irradiation alone. Taken together, our findings provided evidence that PIM1-specific inhibitors, SGI-1776, ETP-45299, and tryptanthrin, can act as novel radiosensitizers to enhance the efficacy of radiotherapy by inhibiting irradiation-induced signaling pathway associated with radioresistance.


Oncotarget | 2016

Plasminogen activator inhibitor-1 enhances radioresistance and aggressiveness of non-small cell lung cancer cells

JiHoon Kang; Wanyeon Kim; TaeWoo Kwon; HyeSook Youn; Joong Sun Kim; BuHyun Youn

Acquired resistance of tumor cells during treatment limits the clinical efficacy of radiotherapy. Recent studies to investigate acquired resistance under treatment have focused on intercellular communication because it promotes survival and aggressiveness of tumor cells, causing therapy failure and tumor relapse. Accordingly, a better understanding of the functional communication between subpopulations of cells within a tumor is essential to development of effective cancer treatment strategies. Here, we found that conditioned media (CM) from radioresistant non-small cell lung cancer (NSCLC) cells increased survival of radiosensitive cells. Comparative proteomics analysis revealed plasminogen activator inhibitor-1 (PAI-1) as a key molecule in the secretome that acts as an extracellular signaling trigger to strengthen resistance to radiation. Our results revealed that expression and secretion of PAI-1 in radioresistant cells was increased by radiation-induced transcription factors, including p53, HIF-1α, and Smad3. When CM from radioresistant cells was applied to radiosensitive cells, extracellular PAI-1 activated the AKT and ERK1/2 signaling pathway and inhibited caspase-3 activity. Our study also proposed that PAI-1 activates the signaling pathway in radiosensitive cells via extracellular interaction with its binding partners, not clathrin-mediated endocytosis. Furthermore, secreted PAI-1 increased cell migration capacity and expression of EMT markers in vitro and in vivo. Taken together, our findings demonstrate that PAI-1 secreted from radioresistant NSCLC cells reduced radiosensitivity of nearby cells in a paracrine manner, indicating that functional inhibition of PAI-1 signaling has therapeutic potential because it prevents sensitive cells from acquiring radioresistance.


Scientific Reports | 2017

TRAF4 promotes lung cancer aggressiveness by modulating tumor microenvironment in normal fibroblasts

EunGi Kim; Wanyeon Kim; Sungmin Lee; Jahyun Chun; JiHoon Kang; Gaeul Park; IkJoon Han; Hee Jung Yang; HyeSook Youn; BuHyun Youn

Normal fibroblasts surrounding tumor cells play a crucial role in cancer progression through formation of the tumor microenvironment. Because factors secreted from normal fibroblasts can modulate the tumor microenvironment, it is necessary to identify key factors associated with regulation of secreted factors and to investigate the molecular mechanisms contributing to the tumor microenvironment formation process. In this study, we found that radiation induced the expression and K63-linkage poly-ubiquitination of TRAF4 in normal lung fibroblasts. The K63-linkage poly-ubiquitinated TRAF4 formed complexes with NOX2 or NOX4 by mediating phosphorylated p47-phox in normal lung fibroblasts. Moreover, we showed that TRAF4 stabilized NOX complexes by decreasing lysosomal degradation of NOX2 and NOX4 after irradiation. NOX complexes increased endosomal ROS levels that were permeable into cytoplasm, leading to NF-κB-mediated ICAM1 up-regulation. Soluble ICAM1 was subsequently secreted into conditioned media of radiation-activated normal lung fibroblasts. The conditioned media from irradiated normal fibroblasts enhanced proliferation and epithelial-mesenchymal transition of non-small cell lung cancer cells both in vitro and in vivo. These results demonstrate that TRAF4 in irradiated fibroblasts is positively associated with aggressiveness of adjacent cancer cells by altering the tumor microenvironment. Thus, we suggest that regulation of TRAF4 might be a promising strategy for cancer therapy.


Oncology Letters | 2017

Effects of traditional oriental medicines as anti-cytotoxic agents in radiotherapy (Review)

Wanyeon Kim; JiHoon Kang; Sungmin Lee; BuHyun Youn

The primary goal of radiotherapy in oncology is to enhance the efficacy of tumor cell death while decreasing damage to surrounding normal cells. Positive therapeutic outcomes may be accomplished by improved targeting, precisely targeting tumor cells or protecting normal cells against radiation-induced damage. The potential for antioxidants to decrease normal tissue damage induced by radiation has been investigated in animal models for a number of decades. In attempts for radioprotection, certain synthetic chemicals are suggested as antioxidants and normal tissue protectors against radiation-induced damage, but they have exhibited limitations in pharmacological application due to undesirable effects and high toxicities at clinical doses. The present review focuses on the radioprotective efficacy of traditional oriental medicines with the advantage of low toxicity at pharmacological doses and how such treatments may influence various harmful effects induced by radiation in vitro and in vivo. In addition, medicinal plants and their active constituents with biological activities that may be associated with alleviation of radiation-induced damage through antioxidant, anti-inflammatory, wound healing and immunostimulatory properties are discussed.


Cellular Physiology and Biochemistry | 2017

Surfactant Protein B Suppresses Lung Cancer Progression by Inhibiting Secretory Phospholipase A2 Activity and Arachidonic Acid Production

Sungmin Lee; Daehoon Kim; JiHoon Kang; EunGi Kim; Wanyeon Kim; HyeSook Youn; BuHyun Youn

Background/Aims: Radiotherapy is applied to patients with inoperable cancer types including advanced stage non-small cell lung cancer (NSCLC) and radioresistance functions as a critical obstacle in radiotherapy. This study was aimed to investigate the mechanism of radioresistance regulated by surfactant protein B (SP-B). Methods: To investigate the role of SP-B in radioresistance, ΔSFTPB A549 cell line was established and SP-B expression was analyzed. In response to ionizing radiation (IR), the change of SP-B expression was analyzed in A549 and NCI-H441 cell lines. Conditioned media (CM) from NSCLC cells were utilized to evaluate the downstream signaling pathway. The in vivo effects of SP-B were assessed through mouse xenograft model with intratumoral injection of CM. Results: In response to IR, NSCLC cell lines showed decreased SP-B regulated by the TGF-β signaling and decreased SP-B stimulated cell survival and epithelial-mesenchymal transition. Treatment with CM from irradiated cells activated sPLA2, enhanced protein kinase Cδ-MAPKs signaling pathway, and increased arachidonic acid production. We confirmed the in vivo roles of SP-B through mouse xenograft model. Conclusion: Our results revealed that down-regulation of SP-B was involved in the radiation-induced metastatic conversion of NSCLC and provided evidence that SP-B acted as a suppressor of NSCLC progression.


Scientific Reports | 2018

Radiation-induced overexpression of transthyretin inhibits retinol-mediated hippocampal neurogenesis

JiHoon Kang; Wanyeon Kim; HyunJeong Seo; EunGi Kim; Beomseok Son; Sungmin Lee; Gaeul Park; Sunmi Jo; Changjong Moon; HyeSook Youn; BuHyun Youn

Cranial irradiation is the main therapeutic strategy for treating primary and metastatic brain tumors. However, radiation is well-known to induce several unexpected side effects including emotional disorders. Although radiation-induced depression may cause decreased quality of life after radiotherapy, investigations of its molecular mechanism and therapeutic strategies are still insufficient. In this study, we found that behavioral symptoms of depression on mice models with the decrease of BrdU/NeuN- and Dcx-positive populations and MAP-2 expression in hippocampus were induced by cranial irradiation, and transthyretin (TTR) was highly expressed in hippocampus after irradiation. It was shown that overexpression of TTR resulted in the inhibition of retinol-mediated neuritogenesis. PAK1 phosphorylation and MAP-2 expression were significantly reduced by TTR overexpression following irradiation. Moreover, we observed that treatment of allantoin and neferine, the active components of Nelumbo nucifera, interrupted irradiation-induced TTR overexpression, consequently leading to the increase of PAK1 phosphorylation, neurite extension, BrdU/NeuN- and Dcx-positive populations, and MAP-2 expression. Behavioral symptoms of depression following cranial irradiation were also relieved by treatment of allantoin and neferine. These findings demonstrate that TTR plays a critical role in neurogenesis after irradiation, and allantoin and neferine could be potential drug candidates for recovering the effects of radiation on neurogenesis and depression.


international conference on control, automation and systems | 2008

Lateral control of an UCT(Unmanned Container Transporter) using ultrasonic satellite system and system identification

Seong Man Yoon; Kil Soo Lee; Su Yong Kim; JiHoon Kang; Man Hyung Lee

In this paper, which is one of the part of the development for the automation system in the port distribution process, covers the UCT (unmanned container transporter). Local detection system and lateral control are proposed on this paper as two practical ways for the UCT management. Local detection system based on pseudo-satellite was used to be able to detect the space coordinates and the absolute location with four ultrasonic transmitters and two receivers. Using this system we get the lateral dynamic model of an UCT by using system identification methods and design a lateral controller. The system input is the steering wheel angle of the vehicle with constant speed and the output is the yaw of the vehicle. With system identification for a basis, to achieve a control objective, we design a PID controller using the model equation.


Molecular Therapy | 2018

LDR-Induced miR-30a and miR-30b Target the PAI-1 Pathway to Control Adverse Effects of NSCLC Radiotherapy

Gaeul Park; Beomseok Son; JiHoon Kang; Sungmin Lee; Jaewan Jeon; Joo-Hyung Kim; Gi-Ra Yi; HyeSook Youn; Changjong Moon; Seon Young Nam; BuHyun Youn

Collaboration


Dive into the JiHoon Kang's collaboration.

Top Co-Authors

Avatar

BuHyun Youn

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Wanyeon Kim

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

EunGi Kim

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

HyeSook Youn

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Beomseok Son

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Sungmin Lee

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Hee Jung Yang

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

TaeWoo Kwon

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Gaeul Park

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

HyunJeong Seo

Pusan National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge