Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eunjoon Kim is active.

Publication


Featured researches published by Eunjoon Kim.


Nature Reviews Neuroscience | 2004

PDZ domain proteins of synapses

Eunjoon Kim; Morgan Sheng

PDZ domains are protein-interaction domains that are often found in multi-domain scaffolding proteins. PDZ-containing scaffolds assemble specific proteins into large molecular complexes at defined locations in the cell. In the postsynaptic density of neuronal excitatory synapses, PDZ proteins such as PSD-95 organize glutamate receptors and their associated signalling proteins and determine the size and strength of synapses. PDZ scaffolds also function in the dynamic trafficking of synaptic proteins by assembling cargo complexes for transport by molecular motors. As key organizers that control synaptic protein composition and structure, PDZ scaffolds are themselves highly regulated by synthesis and degradation, subcellular distribution and post-translational modification.


Cell | 1996

Crystal Structures of a Complexed and Peptide-Free Membrane Protein–Binding Domain: Molecular Basis of Peptide Recognition by PDZ

Declan A. Doyle; Alice Lee; John Lewis; Eunjoon Kim; Morgan Sheng; Roderick MacKinnon

Modular PDZ domains, found in many cell junction-associated proteins, mediate the clustering of membrane ion channels by binding to their C-terminus. The X-ray crystallographic structures of the third PDZ domain from the synaptic protein PSD-95 in complex with and in the absence of its peptide ligand have been determined at 1.8 angstroms and 2.3 angstroms resolution, respectively. The structures reveal that a four-residue C-terminal stretch (X-Thr/Ser-X-Val-COO(-)) engages the PDZ domain through antiparallel main chain interactions with a beta sheet of the domain. Recognition of the terminal carboxylate group of the peptide is conferred by a cradle of main chain amides provided by a Gly-Leu-Gly-Phe loop as well as by an arginine side chain. Specific side chain interactions and a prominent hydrophobic pocket explain the selective recognition of the C-terminal consensus sequence.


Neuron | 1999

Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin.

Scott Naisbitt; Eunjoon Kim; Jian Cheng Tu; Bo Xiao; Carlo Sala; Juli G. Valtschanoff; Richard J. Weinberg; Paul F. Worley; Morgan Sheng

NMDA receptors are linked to intracellular cytoskeletal and signaling molecules via the PSD-95 protein complex. We report a novel family of postsynaptic density (PSD) proteins, termed Shank, that binds via its PDZ domain to the C terminus of PSD-95-associated protein GKAP. A ternary complex of Shank/GKAP/PSD-95 assembles in heterologous cells and can be coimmunoprecipitated from rat brain. Synaptic localization of Shank in neurons is inhibited by a GKAP splice variant that lacks the Shank-binding C terminus. In addition to its PDZ domain, Shank contains a proline-rich region that binds to cortactin and a SAM domain that mediates multimerization. Shank may function as a scaffold protein in the PSD, potentially cross-linking NMDA receptor/PSD-95 complexes and coupling them to regulators of the actin cytoskeleton.


Neuron | 1996

Heteromultimerization and NMDA Receptor-Clustering Activity of Chapsyn-110, a Member of the PSD-95 Family of Proteins

Eunjoon Kim; Kyung-Ok Cho; Adam Rothschild; Morgan Sheng

Chapsyn-110, a novel membrane-associated putative guanylate kinase (MAGUK) that binds directly to N-methyl-D-aspartate (NMDA) receptor and Shaker K+ channel subunits, is 70%-80% identical to, and shares an identical domain organization with, PSD-95/SAP90 and SAP97. In rat brain, chapsyn-110 protein shows a somatodendritic expression pattern that overlaps partly with PSD-95 but that contrasts with the axonal distribution of SAP97. Chapsyn-110 associates tightly with the postsynaptic density in brain, and mediates the clustering of both NMDA receptors and K+ channels in heterologous cells. Indeed, chapsyn-110 and PSD-95 can heteromultimerize with each other and are recruited into the same NMDA receptor and K+ channel clusters. Thus, chapsyn-110 and PSD-95 may interact at postsynaptic sites to form a multimeric scaffold for the clustering of receptors, ion channels, and associated signalling proteins.


Neuron | 2001

Regulation of Dendritic Spine Morphology by SPAR, a PSD-95-Associated RapGAP

Daniel T. S. Pak; Soyoung Yang; Sheila Rudolph-Correia; Eunjoon Kim; Morgan Sheng

The PSD-95/SAP90 family of scaffold proteins organizes the postsynaptic density (PSD) and regulates NMDA receptor signaling at excitatory synapses. We report that SPAR, a Rap-specific GTPase-activating protein (RapGAP), interacts with the guanylate kinase-like domain of PSD-95 and forms a complex with PSD-95 and NMDA receptors in brain. In heterologous cells, SPAR reorganizes the actin cytoskeleton and recruits PSD-95 to F-actin. In hippocampal neurons, SPAR localizes to dendritic spines and causes enlargement of spine heads, many of which adopt an irregular appearance with putative multiple synapses. Dominant negative SPAR constructs cause narrowing and elongation of spines. The effects of SPAR on spine morphology depend on the RapGAP and actin-interacting domains, implicating Rap signaling in the regulation of postsynaptic structure.


Nature | 2012

Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function

Hyejung Won; Hye-Ryeon Lee; Heon Yung Gee; Won Mah; Jae-Ick Kim; Jiseok Lee; Seungmin Ha; Changuk Chung; Eun Suk Jung; Yi Sul Cho; Sae-Geun Park; Jungsoo Lee; Kyungmin Lee; Daesoo Kim; Yong Chul Bae; Bong-Kiun Kaang; Min Goo Lee; Eunjoon Kim

Autism spectrum disorder (ASD) is a group of conditions characterized by impaired social interaction and communication, and restricted and repetitive behaviours. ASD is a highly heritable disorder involving various genetic determinants. Shank2 (also known as ProSAP1) is a multi-domain scaffolding protein and signalling adaptor enriched at excitatory neuronal synapses, and mutations in the human SHANK2 gene have recently been associated with ASD and intellectual disablility. Although ASD-associated genes are being increasingly identified and studied using various approaches, including mouse genetics, further efforts are required to delineate important causal mechanisms with the potential for therapeutic application. Here we show that Shank2-mutant (Shank2−/−) mice carrying a mutation identical to the ASD-associated microdeletion in the human SHANK2 gene exhibit ASD-like behaviours including reduced social interaction, reduced social communication by ultrasonic vocalizations, and repetitive jumping. These mice show a marked decrease in NMDA (N-methyl-d-aspartate) glutamate receptor (NMDAR) function. Direct stimulation of NMDARs with d-cycloserine, a partial agonist of NMDARs, normalizes NMDAR function and improves social interaction in Shank2−/− mice. Furthermore, treatment of Shank2−/− mice with a positive allosteric modulator of metabotropic glutamate receptor 5 (mGluR5), which enhances NMDAR function via mGluR5 activation, also normalizes NMDAR function and markedly enhances social interaction. These results suggest that reduced NMDAR function may contribute to the development of ASD-like phenotypes in Shank2−/− mice, and mGluR modulation of NMDARs offers a potential strategy to treat ASD.


Neuron | 2002

Interaction between GRIP and Liprin-α/SYD2 Is Required for AMPA Receptor Targeting

Michael Wyszynski; Eunjoon Kim; Anthone W. Dunah; Maria Passafaro; Juli G. Valtschanoff; Carles Serra-Pagès; Michel Streuli; Richard J. Weinberg; Morgan Sheng

Abstract Interaction with the multi-PDZ protein GRIP is required for the synaptic targeting of AMPA receptors, but the underlying mechanism is unknown. We show that GRIP binds to the liprin-α/SYD2 family of proteins that interact with LAR receptor protein tyrosine phosphatases (LAR-RPTPs) and that are implicated in presynaptic development. In neurons, liprin-α and LAR-RPTP are enriched at synapses and coimmunoprecipitate with GRIP and AMPA receptors. Dominant-negative constructs that interfere with the GRIP-liprin interaction disrupt the surface expression and dendritic clustering of AMPA receptors in cultured neurons. Thus, by mediating the targeting of liprin/GRIP-associated proteins, liprin-α is important for postsynaptic as well as presynaptic maturation.


American Journal of Human Genetics | 2011

Excess of De Novo Deleterious Mutations in Genes Associated with Glutamatergic Systems in Nonsyndromic Intellectual Disability

Fadi F. Hamdan; Julie Gauthier; Yoichi Araki; Da-Ting Lin; Yuhki Yoshizawa; Kyohei Higashi; A-Reum Park; Dan Spiegelman; Amélie Piton; Hideyuki Tomitori; Hussein Daoud; Christine Massicotte; Edouard Henrion; Ousmane Diallo; Masoud Shekarabi; Claude Marineau; Michael Shevell; Bruno Maranda; Grant A. Mitchell; Amélie Nadeau; Guy D'Anjou; Michel Vanasse; Myriam Srour; Ronald G. Lafrenière; Pierre Drapeau; Jean Claude Lacaille; Eunjoon Kim; Jae-Ran Lee; Kazuei Igarashi; Richard L. Huganir

Little is known about the genetics of nonsyndromic intellectual disability (NSID). We hypothesized that de novo mutations (DNMs) in synaptic genes explain an important fraction of sporadic NSID cases. In order to investigate this possibility, we sequenced 197 genes encoding glutamate receptors and a large subset of their known interacting proteins in 95 sporadic cases of NSID. We found 11 DNMs, including ten potentially deleterious mutations (three nonsense, two splicing, one frameshift, four missense) and one neutral mutation (silent) in eight different genes. Calculation of point-substitution DNM rates per functional and neutral site showed significant excess of functional DNMs compared to neutral ones. De novo truncating and/or splicing mutations in SYNGAP1, STXBP1, and SHANK3 were found in six patients and are likely to be pathogenic. De novo missense mutations were found in KIF1A, GRIN1, CACNG2, and EPB41L1. Functional studies showed that all these missense mutations affect protein function in cell culture systems, suggesting that they may be pathogenic. Sequencing these four genes in 50 additional sporadic cases of NSID identified a second DNM in GRIN1 (c.1679_1681dup/p.Ser560dup). This mutation also affects protein function, consistent with structural predictions. None of these mutations or any other DNMs were identified in these genes in 285 healthy controls. This study highlights the importance of the glutamate receptor complexes in NSID and further supports the role of DNMs in this disorder.


Neuron | 1997

Synaptic Clustering of the Cell Adhesion Molecule Fasciclin II by Discs-Large and its Role in the Regulation of Presynaptic Structure

Ulrich Thomas; Eunjoon Kim; Sven Kuhlendahl; Young Ho Koh; Eckart D. Gundelfinger; Morgan Sheng; Craig C. Garner; Vivian Budnik

The cell adhesion molecule Fasciclin II (FASII) is involved in synapse development and plasticity. Here we provide genetic and biochemical evidence that proper localization of FASII at type I glutamatergic synapses of the Drosophila neuromuscular junction is mediated by binding between the intracellular tSXV bearing C-terminal tail of FASII and the PDZ1-2 domains of Discs-Large (DLG). Moreover, mutations in fasII and/or dlg have similar effects on presynaptic ultrastructure, suggesting their functional involvement in a common developmental pathway. DLG can directly mediate a biochemical complex and a macroscopic cluster of FASII and Shaker K+ channels in heterologous cells. These results indicate a central role for DLG in the structural organization and downstream signaling mechanisms of cell adhesion molecules and ion channels at synapses.


Neuron | 1997

Disulfide-Linked Head-to-Head Multimerization in the Mechanism of Ion Channel Clustering by PSD-95

Yi-Ping Hsueh; Eunjoon Kim; Morgan Sheng

The PSD-95/SAP90 family of PDZ-containing proteins is directly involved in the clustering of specific ion channels at synapses. We report that channel clustering depends on a conserved N-terminal domain of PSD-95 that mediates multimerization and disulfide linkage of PSD-95 protomers. This N-terminal multimerization domain confers channel clustering activity on a single PDZ domain. Thus, channel clustering depends on aggregation of PDZ domains achieved by head-to-head multimerization of PSD-95, rather than by concatenation of PDZ domains in PSD-95 monomers. This mechanism predicts that PSD-95 can organize heterogeneous membrane protein clusters via differential binding specificities of its three PDZ domains. PSD-95 and its relative chapsyn-110 exist as disulfide-linked complexes in rat brain, consistent with head-to-head multimerization of these proteins in vivo.

Collaboration


Dive into the Eunjoon Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yong Chul Bae

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Won Mah

Kyungpook National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge