Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeonghoon Choi is active.

Publication


Featured researches published by Jeonghoon Choi.


The Journal of Neuroscience | 2005

Regulation of Dendritic Spine Morphogenesis by Insulin Receptor Substrate 53, a Downstream Effector of Rac1 and Cdc42 Small GTPases

Jeonghoon Choi; Jaewon Ko; Bence Rácz; Alain Burette; Jae-Ran Lee; Seho Kim; Moonseok Na; Hyun Woo Lee; Karam Kim; Richard J. Weinberg; Eunjoon Kim

The small GTPases Rac1 and Cdc42 are key regulators of the morphogenesis of actin-rich dendritic spines in neurons. However, little is known about how activated Rac1/Cdc42 regulates dendritic spines. Insulin receptor substrate 53 (IRSp53), which is highly expressed in the postsynaptic density (PSD), is known to link activated Rac1/Cdc42 to downstream effectors for actin regulation in non-neural cells. Here, we report that IRSp53 interacts with two specific members of the PSD-95 family, PSD-95 and chapsyn-110/PSD-93, in brain. An IRSp53 mutant lacking the C-terminal PSD-95-binding motif shows significant loss of synaptic localization in cultured neurons. Overexpression of IRSp53 in cultured neurons increases the density of dendritic spines but does not affect their length or width. Conversely, short-interfering RNA-mediated knock-down of IRSp53 reduces the density, length, and width of spines. In addition, the density and size of spines are decreased by a dominant-negative IRSp53 with a point mutation in the Src homology 3 (SH3) domain and a dominant-negative proline-rich region of WAVE2 (Wiskott-Aldrich syndrome protein family Verprolin-homologous protein), a downstream effector of IRSp53 that binds to the SH3 domain of IRSp53. These results suggest that PSD-95 interaction is an important determinant of synaptic IRSp53 localization and that the SH3 domain of IRSp53 links activated Rac1/Cdc42 to downstream effectors for the regulation of spine morphogenesis.


Journal of Biological Chemistry | 2002

Phosphorylation of Stargazin by Protein Kinase A Regulates Its Interaction with PSD-95

Jeonghoon Choi; Jaewon Ko; Eunhye Park; Jae-Ran Lee; Jiyoung Yoon; Sangmi Lim; Eunjoon Kim

Stargazin is the first transmembrane protein known to associate with AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionate) glutamate receptors (AMPARs) and regulate their synaptic targeting by two distinct mechanisms, specifically via delivery of AMPARs to the surface membrane and synaptic targeting of these receptors by binding to PSD-95/SAP-90 and related PDZ proteins. However, it is not known whether and how this stargazin-mediated synaptic targeting of AMPARs is regulated. Stargazin interacts with the PDZ domains of PSD-95 through the C-terminal PDZ-binding motif. The stargazin C terminus contains a consensus sequence for phosphorylation by cAMP-dependent protein kinase A (PKA). Phosphorylation site-specific stargazin antibodies reveal that the stargazin C terminus is phosphorylated at the Thr-321 residue in heterologous cells and in vivo. Stargazin phosphorylation is enhanced by the catalytic subunit of PKA. Mutations mimicking stargazin phosphorylation (T321E and T321D) lead to elimination of yeast two-hybrid interactions, in vitrocoimmunoprecipitation, and coclustering between stargazin and PSD-95. Phosphorylated stargazin shows a selective loss of coimmunoprecipitation with PSD-95 in heterologous cells and limited enrichment in postsynaptic density fractions of rat brain. These results suggest that phosphorylation of the stargazin C terminus by PKA regulates its interaction with PSD-95 and synaptic targeting of AMPARs.


The Journal of Neuroscience | 2009

Enhanced NMDA Receptor-Mediated Synaptic Transmission, Enhanced Long-Term Potentiation, and Impaired Learning and Memory in Mice Lacking IRSp53

Myoung-Hwan Kim; Jeonghoon Choi; Jinhee Yang; Woosuk Chung; Jihyun Kim; Sang Kyoo Paik; Karam Kim; Seungnam Han; Hyejung Won; Young-Soo Bae; Sukhee Cho; Jinsoo Seo; Yong Chul Bae; Se-Young Choi; Eunjoon Kim

IRSp53 is an adaptor protein that acts downstream of Rac and Cdc42 small GTPases and is implicated in the regulation of membrane deformation and actin filament assembly. In neurons, IRSp53 is an abundant postsynaptic protein and regulates actin-rich dendritic spines; however, its in vivo functions have not been explored. We characterized transgenic mice deficient of IRSp53 expression. Unexpectedly, IRSp53−/− neurons do not show significant changes in the density and ultrastructural morphologies of dendritic spines. Instead, IRSp53−/− neurons exhibit reduced AMPA/NMDA ratio of excitatory synaptic transmission and a selective increase in NMDA but not AMPA receptor-mediated transmission. IRSp53−/− hippocampal slices show a markedly enhanced long-term potentiation (LTP) with no changes in long-term depression. LTP-inducing theta burst stimulation enhances NMDA receptor-mediated transmission. Spatial learning and novel object recognition are impaired in IRSp53−/− mice. These results suggest that IRSp53 is involved in the regulation of NMDA receptor-mediated excitatory synaptic transmission, LTP, and learning and memory behaviors.


The Journal of Neuroscience | 2010

Regulation of synaptic Rac1 activity, long-term potentiation maintenance, and learning and memory by BCR and ABR Rac GTPase-activating proteins

Daeyoung Oh; Seungnam Han; Jinsoo Seo; Jae-Ran Lee; Jeonghoon Choi; John Groffen; Karam Kim; Yi Sul Cho; Han Saem Choi; Hyewon Shin; Jooyeon Woo; Hyejung Won; Soon Kwon Park; Soo Young Kim; Jihoon Jo; Daniel J. Whitcomb; Kwangwook Cho; Hyun Soo Kim; Yong Chul Bae; Nora Heisterkamp; Se-Young Choi; Eunjoon Kim

Rho family small GTPases are important regulators of neuronal development. Defective Rho regulation causes nervous system dysfunctions including mental retardation and Alzheimers disease. Rac1, a member of the Rho family, regulates dendritic spines and excitatory synapses, but relatively little is known about how synaptic Rac1 is negatively regulated. Breakpoint cluster region (BCR) is a Rac GTPase-activating protein known to form a fusion protein with the c-Abl tyrosine kinase in Philadelphia chromosome-positive chronic myelogenous leukemia. Despite the fact that BCR mRNAs are abundantly expressed in the brain, the neural functions of BCR protein have remained obscure. We report here that BCR and its close relative active BCR-related (ABR) localize at excitatory synapses and directly interact with PSD-95, an abundant postsynaptic scaffolding protein. Mice deficient for BCR or ABR show enhanced basal Rac1 activity but only a small increase in spine density. Importantly, mice lacking BCR or ABR exhibit a marked decrease in the maintenance, but not induction, of long-term potentiation, and show impaired spatial and object recognition memory. These results suggest that BCR and ABR have novel roles in the regulation of synaptic Rac1 signaling, synaptic plasticity, and learning and memory, and that excessive Rac1 activity negatively affects synaptic and cognitive functions.


Nature Neuroscience | 2015

Social deficits in IRSp53 mutant mice improved by NMDAR and mGluR5 suppression

Woosuk Chung; Su Yeon Choi; Eunee Lee; Haram Park; Jaeseung Kang; Hanwool Park; Yeonsoo Choi; Dong Soo Lee; Sae-Geun Park; Ryunhee Kim; Yi Sul Cho; Jeonghoon Choi; Myoung-Hwan Kim; Jong Won Lee; Seungjoon Lee; Issac Rhim; Min Whan Jung; Daesoo Kim; Yong Chul Bae; Eunjoon Kim

Social deficits are observed in diverse psychiatric disorders, including autism spectrum disorders and schizophrenia. We found that mice lacking the excitatory synaptic signaling scaffold IRSp53 (also known as BAIAP2) showed impaired social interaction and communication. Treatment of IRSp53−/− mice, which display enhanced NMDA receptor (NMDAR) function in the hippocampus, with memantine, an NMDAR antagonist, or MPEP, a metabotropic glutamate receptor 5 antagonist that indirectly inhibits NMDAR function, normalized social interaction. This social rescue was accompanied by normalization of NMDAR function and plasticity in the hippocampus and neuronal firing in the medial prefrontal cortex. These results, together with the reduced NMDAR function implicated in social impairments, suggest that deviation of NMDAR function in either direction leads to social deficits and that correcting the deviation has beneficial effects.


The EMBO Journal | 2004

An intramolecular interaction between the FHA domain and a coiled coil negatively regulates the kinesin motor KIF1A

Jae-Ran Lee; Hyewon Shin; Jeonghoon Choi; Jaewon Ko; Seho Kim; Hyun Woo Lee; Karam Kim; Seong-Hwan Rho; Jun Hyuck Lee; Soo Hyun Eom; Eunjoon Kim

Motor proteins not actively involved in transporting cargoes should remain inactive at sites of cargo loading to save energy and remain available for loading. KIF1A/Unc104 is a monomeric kinesin known to dimerize into a processive motor at high protein concentrations. However, the molecular mechanisms underlying monomer stabilization and monomer‐to‐dimer transition are not well understood. Here, we report an intramolecular interaction in KIF1A between the forkhead‐associated (FHA) domain and a coiled‐coil domain (CC2) immediately following the FHA domain. Disrupting this interaction by point mutations in the FHA or CC2 domains leads to a dramatic accumulation of KIF1A in the periphery of living cultured neurons and an enhancement of the microtubule (MT) binding and self‐multimerization of KIF1A. In addition, point mutations causing rigidity in the predicted flexible hinge disrupt the intramolecular FHA–CC2 interaction and increase MT binding and peripheral accumulation of KIF1A. These results suggest that the intramolecular FHA–CC2 interaction negatively regulates KIF1A activity by inhibiting MT binding and dimerization of KIF1A, and point to a novel role of the FHA domain in the regulation of kinesin motors.


The EMBO Journal | 2009

Synaptic removal of diacylglycerol by DGKζ and PSD‐95 regulates dendritic spine maintenance

Karam Kim; Jinhee Yang; Xiao-Ping Zhong; Myoung-Hwan Kim; Yun Sook Kim; Hyun Woo Lee; Seungnam Han; Jeonghoon Choi; Kihoon Han; Jinsoo Seo; Stephen M. Prescott; Matthew K. Topham; Yong Chul Bae; Gary A. Koretzky; Se-Young Choi; Eunjoon Kim

Diacylglycerol (DAG) is an important lipid signalling molecule that exerts an effect on various effector proteins including protein kinase C. A main mechanism for DAG removal is to convert it to phosphatidic acid (PA) by DAG kinases (DGKs). However, it is not well understood how DGKs are targeted to specific subcellular sites and tightly regulates DAG levels. The neuronal synapse is a prominent site of DAG production. Here, we show that DGKζ is targeted to excitatory synapses through its direct interaction with the postsynaptic PDZ scaffold PSD‐95. Overexpression of DGKζ in cultured neurons increases the number of dendritic spines, which receive the majority of excitatory synaptic inputs, in a manner requiring its catalytic activity and PSD‐95 binding. Conversely, DGKζ knockdown reduces spine density. Mice deficient in DGKζ expression show reduced spine density and excitatory synaptic transmission. Time‐lapse imaging indicates that DGKζ is required for spine maintenance but not formation. We propose that PSD‐95 targets DGKζ to synaptic DAG‐producing receptors to tightly couple synaptic DAG production to its conversion to PA for the maintenance of spine density.


The EMBO Journal | 2011

DGKι regulates presynaptic release during mGluR-dependent LTD

Jinhee Yang; Jinsoo Seo; Ramya Nair; Seungnam Han; Seil Jang; Karam Kim; Kihoon Han; Sang Kyoo Paik; Jeonghoon Choi; Seung-Hoon Lee; Yong Chul Bae; Matthew K. Topham; Stephen M. Prescott; Jeong-Seop Rhee; Se-Young Choi; Eunjoon Kim

Diacylglycerol (DAG) is an important lipid second messenger. DAG signalling is terminated by conversion of DAG to phosphatidic acid (PA) by diacylglycerol kinases (DGKs). The neuronal synapse is a major site of DAG production and action; however, how DGKs are targeted to subcellular sites of DAG generation is largely unknown. We report here that postsynaptic density (PSD)‐95 family proteins interact with and promote synaptic localization of DGKι. In addition, we establish that DGKι acts presynaptically, a function that contrasts with the known postsynaptic function of DGKζ, a close relative of DGKι. Deficiency of DGKι in mice does not affect dendritic spines, but leads to a small increase in presynaptic release probability. In addition, DGKι−/− synapses show a reduction in metabotropic glutamate receptor‐dependent long‐term depression (mGluR‐LTD) at neonatal (∼2 weeks) stages that involve suppression of a decrease in presynaptic release probability. Inhibition of protein kinase C normalizes presynaptic release probability and mGluR‐LTD at DGKι−/− synapses. These results suggest that DGKι requires PSD‐95 family proteins for synaptic localization and regulates presynaptic DAG signalling and neurotransmitter release during mGluR‐LTD.


The Journal of Neuroscience | 2008

Preso, A Novel PSD-95-Interacting FERM and PDZ Domain Protein That Regulates Dendritic Spine Morphogenesis

Hyun Woo Lee; Jeonghoon Choi; Hyewon Shin; Karam Kim; Jinhee Yang; Moonseok Na; So Yoen Choi; Gil Bu Kang; Soo Hyun Eom; Hyun Kim; Eunjoon Kim

PSD-95 is an abundant postsynaptic density (PSD) protein involved in the formation and regulation of excitatory synapses and dendritic spines, but the underlying mechanisms are not comprehensively understood. Here we report a novel PSD-95-interacting protein Preso that regulates spine morphogenesis. Preso is mainly expressed in the brain and contains WW (domain with two conserved Trp residues), PDZ (PSD-95/Dlg/ZO-1), FERM (4.1, ezrin, radixin, and moesin), and C-terminal PDZ-binding domains. These domains associate with actin filaments, the Rac1/Cdc42 guanine nucleotide exchange factor βPix, phosphatidylinositol-4,5-bisphosphate, and the postsynaptic scaffolding protein PSD-95, respectively. Preso overexpression increases the density of dendritic spines in a manner requiring WW, PDZ, FERM, and PDZ-binding domains. Conversely, knockdown or dominant-negative inhibition of Preso decreases spine density, excitatory synaptic transmission, and the spine level of filamentous actin. These results suggest that Preso positively regulates spine density through its interaction with the synaptic plasma membrane, actin filaments, PSD-95, and the βPix-based Rac1 signaling pathway.


The Journal of Neuroscience | 2010

Regulation of Dendritic Spines, Spatial Memory, and Embryonic Development by the TANC Family of PSD-95-Interacting Proteins

Seungnam Han; Jungyong Nam; Yan Li; Seho Kim; Suk Hee Cho; Yi Sul Cho; So Yeon Choi; Jeonghoon Choi; Kihoon Han; Youngrim Kim; Moonseok Na; Hyun Kim; Yong Chul Bae; Se-Young Choi; Eunjoon Kim

PSD-95 (postsynaptic density-95) is thought to play important roles in the regulation of dendritic spines and excitatory synapses, but the underlying mechanisms have not been fully elucidated. TANC1 is a PSD-95-interacting synaptic protein that contains multiple domains for protein-protein interactions but whose function is not well understood. In the present study, we provide evidence that TANC1 and its close relative TANC2 regulate dendritic spines and excitatory synapses. Overexpression of TANC1 and TANC2 in cultured neurons increases the density of dendritic spines and excitatory synapses in a manner that requires the PDZ (PSD-95/Dlg/ZO-1)-binding C termini of TANC proteins. TANC1-deficient mice exhibit reduced spine density in the CA3 region of the hippocampus, but not in the CA1 or dentate gyrus regions, and show impaired spatial memory. TANC2 deficiency, however, causes embryonic lethality. These results suggest that TANC1 is important for dendritic spine maintenance and spatial memory, and implicate TANC2 in embryonic development.

Collaboration


Dive into the Jeonghoon Choi's collaboration.

Top Co-Authors

Avatar

Yong Chul Bae

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Se-Young Choi

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge